Локальные формации с метаабелевыми группами
5) пустым, если для любой неединичной группы ;
6) -экраном, если для любой группы .
-экран при будем называть единичным экраном.
Легко видеть, что каждый локальный экран является однородным, а каждый композиционный экран является примарно постоянным.
Пример 3.1. Пусть и – непустые формации, причем , а групповая функция такова, что для каждой нееденичной примарной группы и для любой непримарной группы . Тогда – однородный экран, не являющийся ни локальным, ни композиционным.
Пример 3.2. Пусть – непустая формация, а групповая функция такова, что для любой нееденичной группы выполняются условия:
1) , если не имеет абелевых композиционных факторов;
2) , если имеет хотя бы один абелев композиционный фактор.
Тогда – композиционный экран, не являющийся однородным.
Замечание 1. Локальный экран полностью определяется своими значениями на примарных подгруппах. Поютому, чтобы построить локальный экран , достаточно каждому простому числу поставить в соответствие некоторую формацию , а затем для любой группы положить , где пробегает .
Замечание 2. Чтобы построить композиционный экран , нужно каждой простой группе поставить в соответствие некоторую формацию , а затем для любой группы положить , где пробегает все композиционные факторы группы .
Лемма 3.3. Справедливы следующие утверждения: 1) пересечение любого непустого множества однородных экранов снова является однородным экраном;
2) пересечение любого непустого множества локальных экранов снова является локальным экраном;
3) пересечение любого непустого множества композиционных экранов снова является композиционным экраном.
Доказательство. Пусть экран является пересечением множества экранов . Предположим, что все экраны являются локальными, т.е. для любых и имеет место равенство:
где пробегает все примарные подгруппы группы . Тогда
а значит, – локальный экран.
Лемма 3.4. Объединение любой непустой цепи примарно постоянных экранов является примарно постоянным экраном.
Доказательство. Пусть – некоторая цепь экранов, – ее объединение, . По лемме 3.3 функция является экраном, причем ясно, что примарная постоянность влечет примарную постоянность экрана . Предположим, что все являются однородными экранами. Тогда, если – любая группа и , то . Следовательно,
что и доказывает однородность экрана .
Экраны формаций
Каждой групповой функции соответствует формация .
Лемма 3.5. является непустой формацией для любой групповой функции .
Определение 3.3. Пусть – некоторая формация. Если – такой экран, что , то формация называется ступенчатой формацией, причем в этом случае будем говорить, что
– экран формации ,
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах