Локальные формации с метаабелевыми группами
Теорема 5.1. В любой -группе подгруппа совпадает с пересечением централизаторов в всех главных -факторов группы .
Следствие 5.1.1. В любой группе подгруппа Фиттинга совпадает с пересечением централизаторов в всех главных факторов группы .
Следствие 5.1.2. Для любой -разрешимой группы имеет место включение .
Следствие 5.1.3. (Фиттинг). для любой разрешимой группы .
Следствие 5.1.4. (Чунихин [3]). Коммутант -сверхразрешимой группы -нильпотентен.
6. Формация -замкнутых групп. Пусть – формация всех -замкнутых групп ( – некоторое фиксированное множество простых чисел), – такой локальный экран, что для любого для любого . Покажем, что – экран формации .
Очевидно, . Предположим, что класс не пуст, и выберем в нем группу наименьшего порядка. Тогда имеет единственную минимальную нормальную подгруппу , причем не является -группой. Пусть . Так как , то , а значит, . Поэтому – абелева -группа. Так как -замкнута, то и -замкнута, т.е. имеет нормальную -подгруппу . Ясно, что . Так как , то . Легко видеть, что , а значит, и группа -замкнута. Тем самым показано, что .
7. Формация -дисперсивных групп. Пусть – некоторое линейное упорядочение множества всех простых чисел, – формация всех -дисперсивных групп. Покажем, что локальна.
Рассмотрим всевозможные множества простых чисел, обладающие следующим свойством: для всех . Пусть – формация всех -замкнутых групп. Очевидно, . Так как формации локальны, то по лемме 3.4 формация также является локальной.
8. Формация -разрешимых групп. Пусть – формация всех -разрешимых групп, – такой локальный экран, что для любого простого . Нетрудно заметить, что – максимальный внутрений локальный экран формации . В частности, формация является локальной.
9. Формация -сверхразрешимых групп. Пусть – формация всех -сверхразрешимых групп. Обозначим через формацию всех абелевых групп экспоненты, делящей . Построим локальный экран такой, что для любого для любого . Покажем, что . Ясно, что . Пусть , – минимальная нормальная подгруппа группы . По индукции . Если – -группа, то -сверхразрешима. Пусть порядок делится на некоторое число . Тогда, если , то
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах