Локальные формации с метаабелевыми группами
Теорема 2.2. Для любого класса имеет место равенство:
Доказательство. Если , то , и утверждение верно. Пусть . Так как , то класс является -замкнутым. есть класс и по лемме 2.2. Используя это и леммы 2.3 и 2.4, получаем
Последнее означает -замкнутость класса . Итак, – формация, содержащая , так как . Значит, . Обратное включение очевидно.
Лемма 2.5. Для любых элементов группы выполняются равенства Если – подгруппы группы , то выполняются следующие утверждения:
1)
2) для любого гомоморфизма группы ; в частности, если группа из нормализует и , то нормализует и
Лемма 2.6 Пусть – подгруппа нильпотентной группы , причем . Тогда
Доказательство. Для того чтобы доказать лемму, достаточно установить, что при любом натуральном выполняется включение:
При это верно, так как , а значит, . Предположим, что включение (*) справедливо при некотором . Тогда, используя лемму 2.5, получаем
Тем самым (*) доказано.
Теорема 2.3 (Брайант, Брайс, Хартли [1]). Если – такая подгруппа группы , что , то
Доказательство. Пусть – нильпотентная нормальная подгруппа группы , а – такая подгруппа из , что . Докажем индукцией по , что . Это верно, если . Поэтому будем считать, что . Рассмотрим следующие подгруппы прямого произведения
Очевидно, подгруппа нормализует и . Обозначим через подгруппу группы , порожденную подгруппами . Поскольку проекции на множители прямого произведения равны , то . Заметим еще, что , где нормальна в и нильпотентна как подпрямое произведение из .
Пусть – центр подгруппы , . Легко видеть, что , причем и поэлементно перестановочны; аналогично, и поэлементно перестановочны. Но тогда , абелева и нормальна в . Если , то , где , и если , то , что влечет . Следовательно, . Если абелева, то , и мы имеем
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах