Разработка модели обучения школьному курсу стереометрии на модульной основе

Приложение 4

Модуль 1. «Параллельность прямых и плоскостей в

пространстве»

Цель:

усвоить понятия параллельности скрещивающихся прямых в пространстве; прямой, параллельной плоскости в пространстве; двух параллельных плоскостей в пространстве;

рассмотреть случаи взаимного расположения прямых, прямой и плоскости, двух плоскостей в пространстве;

ознакомиться с признаком скрещивающихся прямых, параллельности прямой и плоскости, параллельности двух прямых, параллельности двух плоскостей, теоремой о единственной прямой, проходящей через точку параллельно данной прямой, линии пересечения двух плоскостей третьей;

научиться применять теоретически положения при доказательстве определённых фактов решении практических заданий. Освоение данного модуля необходимо для более глубокого понимания темы и подготовки к восприятию следующего материала.

1. Ознакомьтесь со следующими теоретическими положениями

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются (рис.1). Условное обозначение: аúú b.

Определение. Прямые в пространстве могут не пересекаться, но лежать в разных плоскостях. В этом случае они называются скрещивающимися (рис.2).

Случаи взаимного расположения двух прямых в пространстве (схема I)

СХЕМА I

Теорема. Через точку в пространстве, не принадлежащую данной прямой, проходит единственная прямая, параллельная данной прямой.

Доказательство: пусть точка А не принадлежит прямой b. Проведем через эту прямую и точку А плоскость α. Эта плоскость единственна. В плоскости α через точку А проходит единственная прямая – назовем её а, -параллельно прямой b. Она и будет искомой прямой, параллельной данной (рис.3).

Плоскость может быть задана следующими способами: тремя точками, не принадлежащими одной прямой; двумя пересекающимися прямыми; двумя параллельными прямыми.

Теорема (признак скрещивающихся прямых). Если одна прямая лежит в данной плоскости, а другая прямая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещиваются.

Доказательство: пусть прямая а лежит в плоскости α, а прямая b пересекает плоскость α в точке В, не принадлежащей прямой а (рис.4). Если бы прямые а и b лежали в одной плоскости, то в этой плоскости лежали бы прямая а и точка В.

Поскольку через прямую и точку вне этой прямой проходит единственная плоскость, то этой плоскостью будет плоскость α. Но тогда прямая b лежала бы в плоскости α, что противоречит условию. Следовательно, а и b лежат в разных плоскостях, т.е. скрещиваются.

Исторические сведения. Вопрос о количестве прямых, проходящих через данную точку и параллельных данной прямой, имеет давнюю и интересную историю. Среди аксиом в “Началах” Евклида пятый по счету постулат по своему содержанию совпадает с аксиомой параллельности: “Через точку, взятую вне данной прямой, можно провести не более одной прямой, параллельной этой прямой”. На протяжении двух тысячелетий после Евклида математика пыталась доказать этот постулат, однако все их попытки заканчивались неудачей. Лишь в 1826 г. великий русский геометр Н. И.Лобачевский доказал, что этот постулат нельзя логически вывести из других постулатов Евклида, т.е. нельзя доказать. Поэтому или его можно взять в качестве аксиомы, или в качестве аксиомы может быть взято утверждение о существовании нескольких прямых, проходящие через данную точку и параллельных данной прямой. Положив в основу геометрии эту новую аксиому параллельности, Лобачевский создал совершенно новую, неевклидову геометрию, которая была названа геометрией Лобачевского.

2. Проверьте усвоение теоретического материала. Ответьте на вопросы для самоконтроля.

1. Какие прямые называются параллельными, скрещивающимися? Покажите на параллелепипеде ребра, параллельные и скрещивающиеся с ребром АВ.

2. Какими способами может быть задана плоскость?

3. Сформулируйте признак скрещивающихся прямых.

4. Назовите случаи взаимного расположения прямых в пространстве.

3. Примите участие в учебной беседе. Материал для беседы

1. На модели параллелепипеда, призмы и пирамиды укажите пары параллельных и скрещивающихся ребер, ответ обоснуйте.

2. Какие две прямые в пространстве не являются параллельными? Почему?

3. Верно ли, что 2 прямые, лежащие в разных плоскостях скрещиваются?

4. Три вершины параллелограмма принадлежат одной плоскости. Верно ли, что и четвертая вершина принадлежит той же плоскости? Почему?

4. Самостоятельно выполните задания, затем проверьте решение

1. Прямая с пересекает параллельные прямые а и в. докажите, что прямые а, в и с лежат в одной плоскости.

2. Пусть а и b пересекающиеся прямые, с- параллельна b. Что можно сказать о взаимном расположении плоскостей, определяемых прямыми а и b, b и с?

3. Пусть а и b-скрещивающиеся прямые. Известно, что прямая а лежит в плоскости a. Известно, что прямая а лежит в плоскости a. Определите может ли прямая в:

А) лежать в плоскости a;

Б) быть параллельной плоскости a;

В) пересекать плоскость a.

Ответ подтвердите чертежами.

5. Выполните контрольные задания

Основной уровень: 1. Пусть а и b- скрещивающиеся прямые. Прямые А1В1 и А2В2 пересекают прямые а и b. Могут ли прямые А1В1 и А2В2 быть пересекающимися или параллельными (рис.5)?

2. Седьмое свойство стереометрии в "Началах" Евклида формулируется так: "Если будут две параллельные прямые и на каждой из них взято по произвольной точке, то соединяющая эти точки прямая будет в одной и той же плоскости с параллельными." Докажите.

Повышенный уровень. В пространстве даны n параллельных между собой прямых. Сколько плоскостей можно провести через различные пары этих прямых, если известно, что никакие три из них не лежат в одной плоскости?

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы