Разработка модели обучения школьному курсу стереометрии на модульной основе

3. Докажите, что в правильной пирамиде высота h проходит через центр основания.

4. Найдите угол между диагональю куба и плоскостью его основания.

6. Выполните контрольные задания

Основной уровень:1. Докажите, что в правильной треугольной пирамиде сторона основания перпендикулярна скрещивающемуся с ней ребру. 2. Найдите геометрическое место точек в пространстве, равноудалённых от трё

х данных точек, не принадлежащих одной прямой.

Повышенный уровень: В правильной треугольной пирамиде сторона основания а, боковое ребро b. Найдите угол наклона ребра к плоскости основания.

1. Ознакомьтесь со следующими теоретическими положениями

Определение. Двугранным углом в пространстве называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Полуплоскости называются гранями двугранного угла, а их общая граничная прямая – ребром двугранного угла.

Определение. Пусть a и b-полуплоскости с общей граничной прямой с. рассмотрим плоскость g, перпендикулярную прямой с, и обозначим линии её пересечения с полуплоскостями a и b через а и b соответственно. Угол между этими лучами называется линейным углом данного двугранного угла.

Докажем, что величина линейного угла не зависит от выбора плоскости g.

Доказательство. Пусть g1, g2 – плоскости, перпендикулярные прямой с и пересекающие полуплоскости a и b по лучам а1, а2 и b1, b2 соответственно. Прямые а1 и а2, b1 и b2 сонаправлены, так как они перпендикулярны одной и той же прямой с Þ, углы, образованные этими прямыми, равны.

Определение. Величиной двугранного угла называется величина его линейного угла. Двугранный угол называется прямым, если его линейный угол прямой.

Определение. Углом между двумя пересекающимися плоскостями называется наименьшим из двугранных углов, образованных соответствующими полуплоскостями. Две плоскости называются перпендикулярными, если они образуют прямые двугранные углы.

Теорема (признак перпендикулярности двух плоскостей, достаточное условие перпендикулярности двух плоскостей). Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Доказательство. Пусть плоскость a проходит через прямую а, перпендикулярную плоскости b, с- линия пересечения плоскостей a и b. Докажем, что a перпендикулярна b. В плоскости b через точку пересечения прямой а с плоскостью b проведём прямую b, перпендикулярную прямой с. Через прямую а и b проведём плоскость g. Прямая с будет перпендикулярна плоскости g, так как она перпендикулярна двум пересекающимся прямым а и b в этой плоскости. Так как прямая а перпендикулярна плоскости b, то угол, образованный а и b, прямой. Он является линейным углом соответствующего двугранного угла отсюда следует, что a перпендикулярна b.

2. Проверьте усвоение теоретического материала. Ответьте на вопросы для самоконтроля

1. Дайте определение двугранного угла в пространстве.

2. Что называется линейным углом данного двугранного угла?

3. Зависит ли величина линейного угла от выбора плоскости g?

4. Каким является угол между двумя пересекающимися плоскостями?

5. Какие плоскости называются перпендикулярными?

6. Сформулируйте признак перпендикулярности двух плоскостей.

3. Примите участие в учебной беседе. Материал для беседы

1. В правильной треугольной призме найти угол между боковыми гранями.

2. В кубе АBCDA1B1C1D1 найдите угол наклона плоскости АВС1 к плоскости основания.

3. Верно ли, что две плоскости, перпендикулярные третьей, параллельны между собой?

Для пирамиды SABCD, в которой ребро SA перпендикулярно основанию (параллелограмм), SP=PC, SA=AD, назовите верные утверждения: угол между плоскостями SAB и DBC прямой; SBC и SAB перпендикуляры; плоскости SAC и DBC перпендикуляры; угол между плоскостями SCD и DBC прямой; плоскости DBC и ASP перпендикулярны; угол между плоскостями SBC и ASP прямой.

4. Самостоятельно выполните задания, затем проверьте решение

1. Докажите, что пересекающиеся грани прямоугольного параллелепипеда перпендикулярны.

2. Докажите, что через любую точку пространства проходит плоскость, перпендикулярная данной плоскости. Сколько таких плоскостей?

3. Докажите, что если прямая, лежащая в одной из двух перпендикулярных плоскостей, перпендикулярна линии их пересечения, то она будет перпендикулярна и другой плоскости.

4. Найдите геометрическое место точек пространства, равноудалённых от двух пересекающихся прямых.

6. Выполните контрольные задания

Основной уровень:1. Найдите угол между гранями правильной треугольной пирамиды с равными рёбрами. 2. Докажите, что диагональное сечение АА1С1С и BB1DD1 куба АBCDA1B1C1D1 перпендикулярны. 3. Докажите, что если две пересекающиеся плоскости перпендикулярны третьей плоскости, то линия пересечения первых двух плоскостей будет перпендикулярна третьей плоскости.

Повышенный уровень: Равнобедренный прямоугольный треугольник АВС (угол С=90о) перегнули по высоте СD таким образом, что плоскости ACD и BCD образовали прямой угол. Найдите углы ADB и ACB.

1. Ознакомьтесь со следующими теоретическими положениями

Определение. Расстояние между плоскостью и не принадлежащей ей точкой называется длина перпендикуляра, опущенного из точки на плоскость.

Определение. Расстоянием между двумя параллельными плоскостями называется расстояние от какой-нибудь точки одной плоскости до другой плоскости.

Докажем, что расстояние между параллельными плоскостями не зависит от выбора точки.

Доказательство. Пусть даны параллельные плоскости a и b, точки А1, А2 плоскости a и их ортогональной проекции В1, В2 на плоскость b. Тогда расстояние от точки А1 до плоскости b равно А1В1, а расстояние от точки А2 до плоскости b равно А2В2. четырёхугольник А1В1В2А2 – прямоугольник Þ А1В1=А2В2.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы