Методика изучения свойств прямоугольного треугольника в курсе геометрии 7-8 классов

Вариант 2

1. На рисунке 6 < 1 = < 2, < 3 = < 4 = 90º; BD = DC. Докажите, что треугольник ABC равнобедренный.

2. Один из острых углов прямоугольного треугольника в два раза меньше другого, а разность гипотенузы и меньшего катета равна 15 см. Найдите гипотенузу и меньший катет.

Вариант 3

(для более подготовленных учащихся)

1. Через середину отрезка AB проведен

а прямая a. Из точек A и B к прямой a проведены перпендикуляры AC BD. Докажите, что AC = BD.

2. В прямоугольном треугольнике CDE с прямым углом E проведена высота EF. Найдите CF и FD, если CD = 18 см, а < DCE = 30º.

Вариант 4

(для более подготовленных учащихся)

1. Из точки M биссектрисы неразвёрнутого угла O проведены перпендикуляры MA и MB к сторонам этого угла. Докажите, что MA = MB.

2. В прямоугольном треугольнике ABC с гипотенузой AB и < A = 60º проведена высота CH. Найдите BH, если AH = 6 см.

IV. Итоги урока.

Домашнее задание: повторить пункты 30 –35, прочитать пункт 36; решить №258, 265.

Урок 4. Теорема Пифагора

Цели: а) образовательные: установить зависимость между сторонами прямоугольного треугольника, сформировать навыки применения теоремы Пифагора к решению задач на репродуктивном уровне;

б) развивающие: способствовать формированию умений применять приемы сравнения, обобщения, переноса знаний в новую ситуацию, развитию математического кругозора, наглядно-образного мышления, речи, внимания, памяти;

в) воспитательные: содействовать воспитанию интереса к математике и ее приложения, активности, мобильности, умения общаться, общей культуры.

Тип урока: изучение нового материала.

Методы обучения: частично-поисковый, решение познавательных задач, самопроверка, взаимопроверка.

Формы организации урока: индивидуальная, фронтальная, парная.

Оборудование и источники информации: плакат с доказательством теоремы Пифагора, рисунок к древнеиндийской задаче о лотосе, модель пространственной фигуры с прямоугольными треугольниками, плакат, на котором в стихотворной форме формулируется теорема Пифагора. У учащихся на партах: чистый лист для исследовательской работы, микрокалькуляторы, линейки, карандаши.

Повторение: понятия прямоугольного треугольника, катета, гипотенузы, площадь прямоугольника, прием наблюдения, приемы работы над теоремой.

Знания и навыки: знать теорему Пифагора, ее доказательство, уметь применять к решению задач.

Приемы учебной деятельности: все приемы работы над теоремой, прием наблюдения, частный прием нахождения стороны прямоугольного треугольника, если известны две другие его стороны.

План урока:

Оргмомент, целеполагание.

Актуализация опорных знаний.

Исследовательская работа и выдвижение гипотез.

Доказательство теоремы Пифагора.

Закрепление изученного материала.

Домашнее задание.

Итог урока.

Ход урока:

1. Целеполагание.

Вводная беседа учителя.

– Ребята, сегодня мы с вами отправляемся на машине времени в 6 век до н.э. в Древнюю Грецию. В нашем путешествии нам потребуется очень много знаний, но особенно нам будут нужны знания о косинусе острого угла в прямоугольном треугольнике и пропорция. Давайте вспомним эти понятия.

Итак, вы будете сегодня древнегреческими учеными, а я – простая жительница Древней Греции. А пришла я к вам с просьбой: помогите мне найти длину лестницы к дому, если один ее конец находится на расстоянии 5 м от дома, а другой – на стыке стены и крыши. Высота дома -12 м. (Демонстрируется модель этой ситуации).

С помощью учащихся задача переводится на язык математики: нужно найти длину гипотенузы прямоугольного треугольника по его катетам.

Создается проблемная ситуация: учащиеся не могут решить задачу, так как не знают формулу, выражающую зависимость между гипотенузой и катетами прямоугольного треугольника.

– Сможете вы мне сейчас помочь в решении моей проблемы? Каких знаний вам не хватает для этого? Напоминаю вам, что вы – ученые, а как ученые получают знания?

– Из книг.

– Правильно, какую-то часть знаний они черпают из книг. А откуда эти знания попадают в книгу?

– Их открывают ученые.

– Правильно. Какова же тогда ваша цель на уроке? (учащимися формулируется цель урока, и учитель записывает ее на доске).

Цель: Открыть зависимость между гипотенузой и катетами в прямоугольном треугольнике.

Учитель:

– А как ученые приходят к открытию?

– Иногда это приходит им в голову неожиданно, иногда открытие им снится во сне.

– Все верно. Но это исключительные случаи. В большинстве же случаев ученые проводят многочисленные опыты, на которые уходят целые годы, а иногда и вся жизнь. Затем они выделяют некоторые закономерности и выдвигают гипотезы. Что такое гипотезы? Правильно, это предположение. И те гипотезы, которые они смогут доказать, становятся истинными знаниями, а те, которые не смогут доказать так и остаются гипотезами.

Мы с вами, как истинные ученые, пройдем все этапы:

1. проведем исследования;

2. выдвинем гипотезы;

3. попробуем некоторые гипотезы доказать.

А теперь запишите в тетради: «Исследовательская работа». Построим прямой угол, на сторонах которого будем откладывать катеты разной длины и измерять гипотенузу, соответствующую данным катетам.

Все измерения заносим в таблицу. Каждый работает в своей тетради, но можно советоваться с соседом по парте.

 

a

b

c

1

3

4

5

2

     

– Заметили ли вы какую-нибудь зависимость?

Учащиеся называют свои гипотезы, учитель опровергает их контр примерами.

– Читала я в древних китайских рукописях о каких-то квадратах. Давайте попробуем возвести длины сторон треугольников в квадрат.

Таким образом, получаем правую часть таблицы:

a

b

c

a2

b2

c2

3

4

5

9

16

25

           

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы