Разработка элективного курса по теме: "Кривые второго порядка" для учащихся старшей школы
Теорема 1.3. Геометрическое место точек М плоскости , для которых отношение е расстояния r до точки F к расстоянию d до прямой D есть величина постоянная, представляет собой эллипс (при е<1) или гиперболу (при е>1). При этом точка F называется фокусом, а
прямая D - директрисой рассматриваемого геометрического места.
Доказательство. Убедимся, что в некоторой, специально выбранной системе координат геометрическое место точек, удовлетворяющее требованиям сформулированной теоремы, определяется при е<1 уравнением (т.e. является эллипсом), а при е>1 -уравнением (т. е. является гиперболой). Пусть R- точка пересечения прямой D и прямой А, проходящей через F перпендикулярно D (рис. 6.12). На прямой А выберем положительное направление от F к R при е<1 и от R к F при е>1 (на рис. 6.12 показан случай е<1). Так как дальнейшие рассуждения для случая е>1 и е<1 идентичны, мы проведем их подробно для е<1, т. е. для случая, определяющего эллипс. Обозначим через р расстояние между точками F и R. Вспоминая расположение директрисы эллипса относительно его центра), естественно выбрать начало О координат на прямой А слева от точки R на расстоянии. При заданных е и р величина может быть определена при помощи формулы (1.27). Иными словами, естественно положить
(1.36)
Будем теперь считать прямую А с выбранным началом О и направлением от F к R осью абсцисс. Ось ординат направим так, как указано на рис. 6.12. В выбранной системе координат фокус F имеет координаты (с, 0), где
(1.37)
а директриса D определяется уравнением
(1.38)
Перейдем теперь к выводу уравнения рассматриваемого геометрического места точек. Пусть М - точка плоскости с координатами (х, у) (рис. 6.12). Обозначим через r расстояние от точки М до фокуса F и через d расстояние от точки М до директрисы D. Соотношение ,
(1.39)
является необходимым и достаточным условием расположения точки М на геометрическом месте {М}.
Используя формулу расстояния между двумя точками М и F и формулу для расстояния от точки М до прямой D, получим
(1.40)
(1.41)
Из (1.39), (1.40) и (1.41) вытекает, что соотношение
(1.42)
представляет собой необходимое и достаточное условие расположения точки М с координатами х и у на геометрическом месте {М}. Поэтому соотношение (1.42) является уравнением геометрического места {М}. Путем стандартного приема «уничтожения радикалов», а также используя формулы (1.36) и (1.37), это уравнение легко привести к виду
(1.43)
где b2=а2- с2.
Для завершения доказательства нам нужно убедиться в том, что в процессе преобразования уравнения (1.42) в уравнение (1.43)не появились «лишние корни».
Убедимся в том, что расстояние r от точки М, координаты х и у которой удовлетворяют уравнению (1.43), до точки F(c,0), может быть вычислено по формуле. Используя соотношение (1.37) и формулу а = . получим для г следующее выражение:
.(1.44)
Так как точка М, координаты х и у которой удовлетворяют (1.43), расположена слева от прямой D (для таких точек х а), а для точек прямой D:,где e<1, то для расстояния d от М до D справедлива формула (1.41). Отсюда и из формулы (1.44)вытекает, что для рассматриваемых точек М выполняется соотношение , т. е. уравнение (1.43) является уравнением геометрического места . Аналогично рассматривается случай е>1.
Используя доказанную теорему и определение параболы, мы можем сформулировать следующее определение отличного от окружности эллипса, гиперболы и параболы.
Определение. Геометрическое место {М} точек М плоскости , для которых отношение е расстояния r до точки F этой плоскости к расстоянию d до прямой D, расположенной в плоскости , есть величина постоянная, представляет собой либо эллипс (при 0<е<1), либо параболу (при е=1), либо гиперболу (при е>1). Точка F называется фокусом, прямая D - директрисой, а е - эксцентриситетом геометрического места .
10. Касательные к эллипсу, гиперболе и параболе
1. Уравнения касательных к эллипсу, гиперболе и параболе. Убедимся, что каждая из кривых L, являющаяся эллипсом, гиперболой или параболой, представляет собой объединение графиков двух функций. Рассмотрим, например, каноническое уравнение эллипса. Из этого уравнения следует, Что часть эллипса, точки которой имеют неотрицательные ординаты у, есть график функции.математический обучение элективный эллипс гипербола
(1.51)
а часть эллипса, точки которой имеют неположительные ординаты, есть график функции
. (1.52)
Обращаясь к каноническому уравнению гиперболы (1.9), найдем, что гипербола представляет собой объединение графиков функций
и , при xa и x-a (1.53)
а из канонического уравнения параболы (1.15) вытекает, что эта кривая есть объединение графиков функций
и при (1.54)
Рассмотрим теперь вопрос о касательных к эллипсу, гиперболе и параболе. Естественно, что касательные к этим кривым, будут также касательными к графикам функций (1.51) -(1.54) Найдем, уравнение касательной к эллипсу в его точке М(х, у), считая при этом у0 (пусть, у>0). Пусть X, Y - текущие координаты точки касательной. Так как ее угловойкоэффициент k=y’ где у'=
Другие рефераты на тему «Педагогика»:
- Опытно–поисковая работа по изучению организации работы по физической культуре в дошкольном образовательном учреждении
- Применение занимательного задачного материала для активизации познавательной деятельности учащихся при обучении решению текстовых задач
- Развитие и сущность педагогики
- Технология формирования музыкально-творческих способностей участников любительских музыкальных эстрадных коллективов
- Реализация компетентного подхода в т/о "Золушка"
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения