Моделирование текста задачи как средство развития математического мышления младших школьников
Умение планировать свои действия также активно формируется у младших школьников в процессе школьного обучения. Учитель побуждает детей сначала продумать план решения задачи, а только потом приступать к практическому ее решению.
На уроках в начальных классах при решении учебных задач у детей формируются такие приемы логического мышления, как сравнение, связанное с выделением в предметах обще
го и различного, анализ, связанный с выделением и словесным обозначением в предмете разных свойств и признаков, обобщение, связанное с отвлечением от несущественных особенностей предметов и объединением их на основе общности существенных особенностей.
Вывод: логическое мышление определяет общую стратегию процесса познавательной деятельности в соответствии с основной структурой объектов; широкий смысловой контекст, внутри которого осуществляется наглядно – действенное и наглядно – образное мышление. Его корни лежат в практике повседневного общения ребенка с взрослыми, в конкретных видах активной деятельности самого ребенка, его играх, бытовой деятельности. Поэтому развитие логического мышления – это одна из важных задач начального обучения. Умение мыслить логически, выполнять умозаключения без наглядной опоры, сопоставлять суждения по определенным правилам – это необходимое условие для успешного освоения учебного материала.
Основные методы и приемы работы с задачей в начальной школе
Начальный курс математики раскрывается на системе целесообразно подобранных задач. Значительное место занимает в этой системе текстовые задачи. Текстовая задача – есть описание некоторой ситуации на естественном языке с требованием дать количественную характеристику какого-либо компонента этой ситуации, установить наличие или отсутствие некоторого отношения между её компонентами или определить вид этого отношения. Решение задач – это работа несколько необычная, а именно умственная работа. А чтобы научиться какой-либо работе, нужно предварительно хорошо изучить тот материал, над которым придётся работать, те инструменты, с помощью которых выполняется эта работа.
Значит, для того чтобы научиться решать задачи, надо разобраться в том, что собой они представляют, как они устроены, из каких составных частей они состоят, каковы инструменты, с помощью которых производится решение задач. Каждая задача – это единство условия и цели. Если нет одного из этих компонентов, то нет и задачи. Это очень важно иметь в виду, чтобы проводить анализ текста задачи с соблюдением такого единства. Это означает, что анализ условия задачи необходимо соотносить с вопросом задачи и, наоборот, вопрос задачи анализировать направленно с условием. Их нельзя разрывать, так как они составляют одно целое.
Любая текстовая задача состоит из двух частей: условия и требования (вопроса). В условии соблюдаются сведения об объектах и некоторых величинах, характеризующих данные объекта, об известных и неизвестных значениях этих величин, об отношениях между ними.
Требования задачи – это указание того, что нужно найти. Оно может быть выражено предложением в повелительной или вопросительной форме («Найти площадь треугольника» или «Чему равна площадь прямоугольника?»).
Иногда задачи формируются таким образом, что часть условия или всё условие включено в одно предложение с требованием задачи.
В реальной жизни довольно часто возникают самые разнообразные задачные ситуации. Сформулированные на их основе задачи могут содержать избыточную информацию, то есть такую, которая не нужна для выполнения требования задачи. На основе возникающих в жизни задачных ситуаций могут быть сформулированы и задачи, в которых недостаточно информации для выполнения требований. Так в задаче: «Найти длину и ширину участка прямоугольной формы, если известно, что длина больше ширины на 3 метра» – недостаточно данных для ответа на её вопрос. Чтобы выполнить эту задачу, необходимо её дополнить недостающими данными.
Одна и та же задача может рассматриваться как задача с достаточным числом данных в зависимости от имеющихся и решающих значений.
Рассматривая задачу в узком смысле этого понятия, в ней можно выделить следующие составные элементы:
1. Словесное изложение сюжета, в котором явно или в завуалированной форме указана функциональная зависимость между величинами, числовые значения которых входят в задачу.
2. Числовые значения величин или числовые данные, о которых говорится в тексте задачи.
3. Задание, обычно сформулированное в виде вопроса, в котором предлагается узнать неизвестные значения одной или нескольких величин. Эти значения называют искомыми.
Задачи и решение их занимают в обучении школьников весьма существенное место и по времени, и по их влиянию на умственное развитие ребенка. Понимая роль задачи и её место в обучении и воспитании ученика, учитель должен подходить к подбору задачи и выбору способов решения обоснованно и чётко знать, что должна дать ученику работа при решении данной им задачи.
Все арифметические задачи по числу действий, выполняемых для их решения, делятся на простые и составные. Задача, для решения которой надо выполнить один раз арифметическое действие, называется простой. Задача, для решения которой надо выполнить несколько действий называется составной. Простые задачи в системе обучения математике играют чрезвычайно важную роль. С помощью решения простых задач формируется одно из центральных понятий начального курса математики – понятие об арифметических действиях и ряд других понятий. Умение решать простые задачи является подготовительной ступенью овладения учащимися умением решать составные задачи, так как решение составной задачи сводится к решению ряда простых задач. При решении простых задач происходит первое знакомство с задачей и её составными частями.
В связи с решением простых задач дети овладевают основными приемами работы над задачей.
На первом этапе знакомства детей с простой задачей перед учителем возникает одновременно несколько довольно сложных проблем:
1. Нужно, чтобы в сознание детей вошли и укрепились вторичные сигналы к определенным понятиям, связанным с задачей;
2. Выработать умение видеть в задаче данные числа и искомое число;
3. Научить сознательно выбирать действия и определять компоненты этих действий. Разрешение указанных проблем нельзя расположить в определенной последовательности. В занятиях с детьми довольно часто приходится добиваться результатов не одного за другим, а идти к достижению нескольких целей одновременно, постепенно развивая и расширяя достигнутые успехи в нескольких направлениях.
При знакомстве с задачами и их решением нельзя избежать специфических терминов, но дети должны их понимать, чтобы осознавать смысл задачи. Работа с детьми по усвоению ими терминологии начинается с первых дней занятий в школе и ведётся систематически на протяжении всех лет обучения. Составная задача включает в себя ряд простых задач, связанных между собой так, что искомые одних простых задач служат данными других. Решение составной задачи сводится к расчленению её на ряд простых задач и к последовательному их решению. Таким образом, для решения составной задачи надо установить систему связей между данными и искомым, в соответствии с которой выбрать, а затем выполнить арифметические действия. Рассмотрим в качестве примера задачу: «В школе дежурили 8 девочек, а мальчиков на 2 больше. Сколько детей дежурило в школе?»
Другие рефераты на тему «Педагогика»:
- Методические особенности подготовки учащихся к государственной итоговой аттестации по химии в условиях малокомплектной сельской школы
- Обстановка детского сада - средство развития дошкольников
- Наглядность в преподавании новейшей истории
- Технология проектного обучения профессионального образования
- Особенности речевого развития младших школьников с умственной отсталостью
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения