Алгебра октав

Или диаграммой взаимных произведений:

При получении вышеприведенной таблицы произведений мы исходили из правого закона произведения мнимых единиц кватернионов (внутренний круг диаграммы), правого закона произведения новых единиц (внешний круг диаграммы) и правого закона произведения мнимых единиц исходных кватернионов

на мнимую единицу E (радиальные линии диаграммы). Так же можно использовать определение октав с левыми правилами произведения. В дальнейшем мы будем полагать, что используются правые правила.

§3.Действия над октавами

Так как по доказанному пара вида (и; v), где u = a+bi+cj+dk, v = A+Bi+Cj+Dk K, есть и u+ ve, или в алгебраической форме

a+bi+cj+dk+ Ae+BI+CJ+DK,

то сложение двух октав осуществляется как сложение двух многочленов по правилу:

p+ q= (a+bi+cj+dk+ Ae+BI+CJ+DK) +(a1+b1i+c1j+d1k+ A1e+B1I+C1J+D1K) =

= a+a1+(b+b1)i +(c+c1)j +(d+d1)k +(A+ A1)e +(B+B1)I +(C+C1) J +(D +D1) K.

Умножение октав выполняется так; же, как умножение двух многочленов с учетом порядка, умножения мнимых единиц, представленного в вышеприведенной таблице.

Упражнения: 1. Приведите полное представление произведения двух октав

w= a+bi+cj+dk+ Ae+BI+CJ+DK

и w1 =a1+b1i+c1j+d1k+ A1e+B1I+C1J+D1K

в алгебраической форме.

(a+bi+cj+dk+ Ae+BI+CJ+DK)( a1+b1i+c1j+d1k+ A1e+B1I+C1J+D1K)=a a1+ab1 i+ ac1j+ad1k+aA1E+aB1I+aC1J+aD1K+bia1+bib1i+bic1j+bid1k+diA1E+biB1I+biC1J+

biD1K+cja1+cjb1i+cjc1j+cjd1k+cjA1E+cjB1I+cjC1J+cjD1K+dka1+dkb1i+dkc1j+dkd1k+dkA1E+dkB1I+dkC1J+dkD1K+AEa1+AEb1i+AEc1j+AEd1k+AEA1E+AEB1I+AEC1J+AED1K+ BIa1+BIc1j+BId1k+BIA1E+BIB1I+BIC1J+BID1K+CJa1+Cjb1i+CJc1j

+CJd1k+CJA1E+CJB1I+CJC1J+CJD1K+Dka1+DKb1i+DKc1j+DKd1k+DKA1E+DKB1I+DKC1J+DKD1K=aa1+ab1i+ac1j+ad1k+aA1E+aB1I+aC1J+aD1K+bia1-bb1+bc1k-bd1j-bA1I+bB1E+bC1K+bD1J+cja1-cb1k-cc1+cd1i-cA1J+cB1K-Cc1E +cD1I+dka1+db1j-c1di-dd1+dA1K-dB1J+dC1I-dD1E+AEa1-Ab1I-Ac1J-Ad1K-AA1+Ab1i+AC1j+AD1k+Bia1+Bb1E-Bc1K+Bd1J-Ba1i-BB1-BC1k+BD1j+CJa1+Cb1K-Cc1E-Cd1I-CA1j+CB1k-CC1-CD1i+DK1a-Db1J-Dc1I+Dd1E-DA1k-DB1j+DC1i-DD1=aa1-bb1-cc1-dd1-AA1-BB1-CC1-DD1+i(ab1+ba1+cd1-dc1+AB1-BA1- -cD1+Dc1)+j(ac1-bd1+ca1+db1+AC1+BD1-CA1-DB1)+k(ad1+bc1-cb1+da1+AD1-BC1+CB1-Da1)+E(aA1-bB1-cC1-dD1+Aa1+Bb1+Cc+Dd1)+I(aB1+bA1-Cd1+dC1-Ab1+Ba1-Cd1-Dc1)+J(ac1+bD1+cA1-dB1-Ac1+Bd1+Ca1-Db1)+K(aD1-bC1+cB1+Da1-Ad1-Bc1+ Cb1 +Da1).

Этот результат можно записать в матричной форме:

,

.

Решение примеров:

Пример 1.

Сложить кватернионы:

(1+i-2j+15E-17J)+(-2+5j-17E+20K)= -1+i+3j-2E-17J+20K.

Пример 2.

Выполнить умножение:

(1+3K)(2-i+3j+2E+2K)=2-i+3j+2E+2K+6K-3Ki+9Kj+6KE-6=2-i+3j+2E+8K+3J-9I+6K-6=-4-i+2E-9I+14K.

Пример 3.

Решить уравнение:

(1-2i+4K)x=(2-3j+J)(3-5k+E)-5J+8k.

В правой части приведем подобные слагаемые.

(2-3j+J)(3-5k+E)-5J+8k=6-10k+2E-9j+15jk-3jE+3J-5Jk+JE-5J+8k=6-10k+2E-9j+15i-3J+3J-5I-j-5J+8k=6+15i-10j-2k+2E-5I-5J.

x=(1-2i+4K )-1(6+15i-10j-2k+2E-5I-5J);

x=((1+2i-4K )(6+15i-10j-2k+2E-5I-5J))/21=1/21(6+15i-10j-2k+2E-5I-5J+12i-30-20k+4j-4I-10E-10K-24K-60J-40I-8E-8K+20J-20I)=1/21(-24+27i-6j-22k-16E-69I-45J-442K)

§4. Сопряженные октавы и их свойства

Определение. Если дана октава

w= a+bi+cj+dk+ Ae+BI+CJ+DK,

то октава

= a-bi-cj-dk- Ae-BI-CJ-DK

называется сопряженным ему. В случае, когда октава w выражена через кватернионы и и v как u+ ve, то сопряженная ей октава равна = ū- ve.

Свойства сопряженных октав:

1) р + = 2а R (выводится непосредственным сложением октавы

р=a+bi+cj+dk+Ae+BI+CJ+DK

с сопряженной ей октавой).

(a+bi+cj+dk+Ae+BI+CJ+DK)+ (a-bi-cj-dk-Ae-BI-CJ-DK)=2a.

2) w=w = a2 + b2 + c2 + d2 + A2 + B2 + C2 + D2.

В самом деле:

w=(u+ ve)(ū- ve) = (uū –(-)v)+(-vu+vu)e = (uū+ )+(-vu+vu)e =(|u|2 + |v|2) + 0e = |u|2 + |v|2.

Здесь и и v кватернионы

u = a+bi+cj+dk, v = A+Bi+Cj+Dk.

А так как

|u|2 = a2 + b2 + c2 + d2, |v|2 = A2 + B2 + C2 + D2,

то w=|u|2 + |v|2 = a2 + b2 + c2 + d2 + A2 + B2 + C2 + D2.

Аналогично доказывается равенство

w = a2 + b2 + c2 + d2 + A2 + B2 + C2 + D2.

3) w= w= а R.

4) =+

(вычисление левой и правой частей равенства дает

одинаковые значения).

В самом деле:

w1+ w = (a+bi+cj+dk+( Ae+BI+CJ+DK))+ (a1+b1i+c1j+d1k+ A1e+B1I+C1J+D1K);

левая часть:

=(a-bi-cj-dk-Ae-BI-CJ-DK)+(a1-b1i-c1j-d1k- A1e-B1I-C1J-D1K);

правая часть:

= (a-bi-cj-dk-Ae-BI-CJ-DK);

=( a1-b1i-c1j-d1k- A1e-B1I-C1J-D1K);

+=(a-bi-cj-dk-Ae-BI-CJ-DK)+(a1-b1i-c1j-d1k-A1e-B1I-C1J-D1K).

Отсюда следует, что

:= +.

5) =.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы