Алгебра октав
Пусть
w = u+ ve, w1 = u1+ v1e,
где u, u1 v, v1 - кватернионы.
Так как
ww1= (u+ ve) ( u1+ v1e) = (uu1 - v) + (v1u+vū1)e,
то
= + (v1u+vū1)e= (ū1ū -v) - (v1u+vū1)e.
С другой стороны:
= (ū1 - v1e) (ū - ve) = (ū1 ū -(-(-v1))+(- vū1 -v1) = (ū1ū -v1) - (vū1 + v1u)e.
В силу совпадения правых частей полученных равенств и следует тождество 5.
6) w+w1=2 (aa1+bb1+cc1+dd1+A A1+BB1+CC1 +DD1) R,
Если
w= a+bi+cj+dk+ Ae+BI+CJ+DK, w1 =a1+b1i+c1j+d1k+ A1e+B1I+C1J+D1K.
Пусть
w = u+ ve, w1 = u1+ v1e,
где u, u1 v, v1 - кватернионы. Так как
w=(u+ ve) (ū1 - v1e) = (u ū1+v)+(- v1u+ v1)e = (u ū1+v)(vu1 –v1u)e
а w1=( u1+ v1e) (ū - ve) = (u1ū+ v1) + (-vu1+v1u)e,
то сложив эти два равенства, получим:
w+ w1= (u ū1+v+u1ū+ v1) + (- v1u+ vu1 - vu1+v1u)e= (u ū1+u1ū +v + v1) + 0e = u ū1+u1ū +v + v1 .
В силу свойства 6) сопряженных кватернионов имеют место:
u ū1+u1ū =2 (aa1+bb1+cc1+dd1),
v + v1 = 2 (A A1+BB1+CC1 +DD1),
u = a+bi+cj+dk, u1 = a1+b1i+c1j+d1k,
v = A+Bi+Cj+Dk, v1 = A1+B1i+C1j+D1k.
Тогда из последних равенств следует
w+ w1= 2 (aa1+bb1+cc1+dd1+A A1+BB1+CC1 +DD1).
4.1 Модуль октавы
Определение. Модулем октавы
w=a+bi+cj+dk+Ae+BI+CJ+DK
называется
Модуль октавы w обозначается |w|. Следовательно,
|w| = .
Из свойства 2) сопряженных октав следует |w|2 = w=w. Модуль октавы обладает свойствами:
1) |w| ≥ 0 и |w| = 0 w=0;
2) |w w1| = |w|*|w1|.
Действительно,
|w w1|2 = (w w1)() = (w w1) () = w(w1*)= w|w1|2= |w1|2 w= |w1|2|w|2,
Откуда
|w w1| = |w||w1|
Равенство |pq| = |p||q| после возведения обеих частей в квадрат в развернутом виде имеет вид:
|w w1| = |w| * |w1|.
(a2 + b2 + c2 + d2 + A2 + B2 + C2 + D2) () = (aa1 - bb1 - cc1 - dd1 - AA1 -BB1 - CC1 - DD1)2 +(ab1 + a1b + cd1 - c1d - A1B + B1A + C1D - CD1)2 +(ac1 + a1c - bd1 + b1d - a1c + ac1 - b1d + bd1)2 +(ad1 + a1d+ bc1 - b1c - a1d + ad1 + b1c - bc1)2 +(a1a - b1b - c1c -d1d + Aa1 + Bb1 + Cc1 + Dd1)2 +
(a1b + b1a + c1d - d1c - Ab1 + Ba1 - Cd1 + Dc1)2 +(a1c + c1a - b1d+ d1b - ac1 + ca1 + bd1 - db1)2 +(a1 d+ d1a+ b1c - c1b - ad1 + da1 - bc1 + cb1)2.
Это равенство можно сформулировать так: произведение суммы квадратов восьми действительных чисел на сумму квадратов других восьми действительных чисел равно сумме квадратов восьми действительных чисел.
Если
w/= bi+cj+dk+ Ae+BI+CJ+DK
- чисто мнимая октава, то
w/2= (bi+cj+dk+ Ae+BI+CJ+DK) (bi+cj+dk+ Ae+BI+CJ+DK) = b2 - c2 - d2 - A2 - B2 - C2 - D2 = -(b2 + c2 + d2 + A2 + B2 + C2 + D2) ≤ 0,
т.е. квадрат чисто мнимой октавы w/ есть неположительное действительное число.
Можно показать и обратное: если квадрат октавы есть неположительное действительное число, то эта октава - чисто мнимая. Действительно, если октаву w= a+bi+cj+dk+ Ae+BI+CJ+DK представить в виде w = а + w/, где w/ - чисто мнимая октава
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах