Алгебра октав

откуда при u ≠ 0 следует, что у = 0. Тогда = 0 и из первого уравнения системы

их = и следует, что х = 1. Итак, пара (х; у) = (1; 0) является правым единичным элементом в .

В случае, если и = 0, v ≠ 0, второе уравнение .системы имеет вид v13 height=23 src="images/referats/3160/image032.png">= v, откуда сразу х = 1, а из первого уравнения системы у = 0, т.е. приходим к тому же решению.

Для определения левого нейтрального элемента (единицы) относиnельно операции умножения в решим уравнение:

(х; у) (u; v) = (u; v),

в котором опять и и v одновременно не считаем равными 0, так как (0; 0) = 0U и это уравнение будет иметь любое решение. Пусть опять u ≠ 0. Тогда:

(х; у) (и; v) = (и: v) (хи - y; vх - уū) = (и; v)

Умножим обе части первого уравнения этой системы справа на u-1=, откуда:

x(uu-1) = y+ u*u-1 x = 1+ 2yū,

Подставим полученное значение х во второе уравнение системы:

v(1+ 2yū) + уū= vv + 2 vyū + уū= vyū+ уū= 0 (+ 1)уū =0,

откуда при u ≠ 0 следует, что у = 0 и из первого уравнения системы хu = и следует, что х = 1. Итак, пара (х; у) = (1; 0) является и левым единичным элементом в . Обозначим (1; 0) = 1U,

11) Для определения правого симметричного для (u; v) элемента решим уравнение:

(u; v) (х: у) = (1; 0) (их - v; уи+ v) = (1; 0)

Умножим обе части первого уравнения этой системы слева на u-1=2, откуда:

(u-1u) x = u-1v + u-1 x =2+2v = 2 + 2yu.

Подставим полученное значение во второе уравнение системы:

v+ + уи= 0 2 + 2 vyu + уи= 0 (|u|2 + |v|2) yu = - vu (|u|2 + |v|2) y = - v,

откуда

у = - .

Тогда из второго уравнения системы

v- u =0v- =0 = x= .

Итак, пара

(x; y) = ; -

является правым обратным элементом для элемента (u; v) в .

Для определения левого симметричного элемента для элемента (u; v) относительно операции умножения в решим уравнение:

(х; у) (u; v) = (1; 0),

в котором опять и и v одновременно не считаем равными 0. Пусть опять и ≠ 0. Тогда:

(х; у) (u; v) = (1; 0) (xu - y; vx + yū) = (1; 0)

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы