Алгебра октав
откуда при u ≠ 0 следует, что у = 0. Тогда = 0 и из первого уравнения системы
их = и следует, что х = 1. Итак, пара (х; у) = (1; 0) является правым единичным элементом в .
В случае, если и = 0, v ≠ 0, второе уравнение .системы имеет вид v13 height=23 src="images/referats/3160/image032.png">= v, откуда сразу х = 1, а из первого уравнения системы у = 0, т.е. приходим к тому же решению.
Для определения левого нейтрального элемента (единицы) относиnельно операции умножения в решим уравнение:
(х; у) (u; v) = (u; v),
в котором опять и и v одновременно не считаем равными 0, так как (0; 0) = 0U и это уравнение будет иметь любое решение. Пусть опять u ≠ 0. Тогда:
(х; у) (и; v) = (и: v) (хи - y; vх - уū) = (и; v)
Умножим обе части первого уравнения этой системы справа на u-1=, откуда:
x(uu-1) = y+ u*u-1 x = 1+ 2yū,
Подставим полученное значение х во второе уравнение системы:
v(1+ 2yū) + уū= vv + 2 vyū + уū= vyū+ уū= 0 (+ 1)уū =0,
откуда при u ≠ 0 следует, что у = 0 и из первого уравнения системы хu = и следует, что х = 1. Итак, пара (х; у) = (1; 0) является и левым единичным элементом в . Обозначим (1; 0) = 1U,
11) Для определения правого симметричного для (u; v) элемента решим уравнение:
(u; v) (х: у) = (1; 0) (их - v; уи+ v) = (1; 0)
Умножим обе части первого уравнения этой системы слева на u-1=2, откуда:
(u-1u) x = u-1v + u-1 x =2+2v = 2 + 2yu.
Подставим полученное значение во второе уравнение системы:
v+ + уи= 0 2 + 2 vyu + уи= 0 (|u|2 + |v|2) yu = - vu (|u|2 + |v|2) y = - v,
откуда
у = - .
Тогда из второго уравнения системы
v- u =0v- =0 = x= .
Итак, пара
(x; y) = ; -
является правым обратным элементом для элемента (u; v) в .
Для определения левого симметричного элемента для элемента (u; v) относительно операции умножения в решим уравнение:
(х; у) (u; v) = (1; 0),
в котором опять и и v одновременно не считаем равными 0. Пусть опять и ≠ 0. Тогда:
(х; у) (u; v) = (1; 0) (xu - y; vx + yū) = (1; 0)
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах