Расчет показателей эконометрики
Система нормальных уравнений составит
Используем следующие формулы для нахождения параметров:
= 2,799
305,6 - 2,799*5,47 = 15,251
Уравнение парной линейной регрессии:
h=15 height=32 src="images/referats/9778/image010.png">= 15,251 + 2,799* x
Величина коэффициента регрессии b = 2,799 означает, что с ростом инвестиций в основной капитал на 1 тыс. руб. доля ВРП на душу населения растет в среднем на 2,80 %-ных пункта.
Знак при свободном члене уравнения положительный, следовательно связь прямая.
3. Рассчитаем линейный коэффициент корреляции:
или
где , - средние квадратические отклонения признаков x и y, соответственно
Так как = 2,23, = 7,098, то
= 0,879, что означает тесную прямую связь рассматриваемых признаков
Коэффициент детерминации составит
= 0,773
Вариация результата (y) на 77,3% объясняется вариацией фактора (x). На долю прочих факторов, не учитываемых в регрессии, приходится 22,7%.
4. Средняя ошибка аппроксимации () находится как средняя арифметическая простая из индивидуальных ошибок
= =7,9%,
(см. последнюю графу расчетной табл. 1.1.).
Ошибка аппроксимации показывает хорошее соответствие расчетных () и фактических (y) данных: среднее отклонение составляет 7,9%.
5. Стандартная ошибка регрессии рассчитывается по следующей формуле:
,
где m – число параметров при переменных x.
В нашем примере стандартная ошибка регрессии
= 3,782
6. Оценку статистической значимости построенное модели регрессии в целом производится с помощью F-критерия Фишера. Фактическое значение F-критерия для парного линейного уравнения регрессии определяется как
F =
где Сфакт = - факторная, или объясненная регрессия, сумма квадратов; Сост = - остаточная сумма квадратов;
- коэффициент детерминации.
В нашем примере F-критерий Фишера будет равен (см. приложение №1):
F = = 27,233
Табличное значение F-критерия при числе степеней свободы 1 и 8 и уровне значимости 0,05 составит: 0,05 F1,8 = 5,32, т. е. фактическое значение F (Fфакт = 27,233) превышает табличное (Fтабл = 5,32), и можно сделать вывод, что уравнение регрессии статистически значимо. Следовательно гипотеза Н0 отклоняется.
Чтобы оценить значимость отдельных параметров уравнения, надо по каждому из параметров определить его стандартные ошибки: mb и ma.
Стандартная ошибка коэффициента регрессии определяется по формуле:
mb = =
где S2 – остаточная дисперсия на одну степень свободы.
Стандартная ошибка параметра a определяется по формуле:
ma = .
Для нахождения стандартных ошибок строим расчетную таблицу (см. приложение №1).
Для нашего примера величина стандартной ошибки коэффициента регрессии составила:
mb == 0,536.
Величина стандартной ошибки параметра a составила:
ma = = 3,168
Для оценки существенности коэффициента регрессии и параметра a их величины сравниваются с их стандартными ошибками, т. е. определяются фактические значения t-критерия Стьюдента:
tb =, ta = .
Для нашего примера
tb = = 5,222, ta = = 4,814
Фактические значения t-критерии превосходят табличные значения:
tb =5,222 > tтабл = 2,306; ta = 4,814 > tтабл = 2,306
Поэтому гипотеза Н0 отклоняется, т. е. a и b не случайно отличаются от нуля, а статистически значимы.
7. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Для расчета точечного прогноза подставим в уравнение регрессии заданное значение факторного признака . Если прогнозное значение инвестиций в основной капитал составит:
= 9,4*0,8 = 7,52 тыс. руб
Тогда прогнозное значение ВРП на душу населения составит:
= 15,251 + 2,799* 7,52 = 36,299 тыс. руб.
Доверительный интервал прогноза определяется с вероятностью (0,95) как
,
где tтабл – табличное значение t-критерия Стьюдента для уровня значимости (1-0,95) и числа степеней свободы (n-2) для парной линейной регрессии; - стандартная ошибка точечного прогноза, которая рассчитывается по формуле:
В нашем примере стандартная ошибка прогноза составила
= 4,116
Предельная ошибка прогноза, которая в 95% случаев не будет превышена, составит:
= = 2,306 * 4,116 = 9,491.
Доверительный интервал прогноза
Другие рефераты на тему «Экономико-математическое моделирование»:
- Использование метода динамического программирования для решения экономических задач
- Разработка системы учета и прогнозирования ежедневных поступлений страховых взносов на обязательное пенсионное страхование
- Математические модели в экономике
- Статистические методы определения экономических показателей
- Управление развитием предприятия
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели