Математическая модель в пространстве состояний линейного стационарного объекта управления

end

end

% Построение z-строки

z_stroka = zeros(1, 4*N+n+2);% формирование матрицы для хранения данных

% Первый элемент z-строки

z_stroka(1) = 1;

% Суммирование правых частей

for j = 1 : n

z_stroka(4*N+n+2) = z_stroka(4*N+n+2) + abs(PravChast(j));

end

% Формирование элементов z-строки между 1-м и последним элементами

%при 2N небазисных переменных, т.е.

при управлениях

for i = 2 : 2 : 2 * N

for j = 1 : n

z_stroka(i) = z_stroka(i) + FG(j, i/2);

end

for j = 1 : n

z_stroka(i+1) = z_stroka(i+1) - FG(j, i/2);

end

end

% Формирование симплекс-таблицы

CT = zeros(n+2*N+1, 4*N+n+2);

% Построение симплекс-таблицы начиная с z-строки

CT(1,:) = z_stroka(1,:);

% Формирование R-строк в симплекс-таблице

for j = 2 : n + 1

% Формирование правой части в R-строках

CT(j, 4*N+n+2) = abs(PravChast(j-1));

% Формирование элементов R-строк между 1-м и последним элементами

%при 2N небазисных переменных, т.е. при управлениях

for i = 2 : 2 : 2 * N

CT(j, i) = FG(j-1, i/2);

CT(j, i+1) = -FG(j-1, i/2);

end

end

% Формирование S-строк в симплекс-таблице

l = 2;

for j = n + 2 : 2 : n + 2 * N + 1

% Формирование правой части в S-строках

CT(j, 4*N+n+2) = u_p;

CT(j+1, 4*N+n+2) = abs(u_m);

% Формирование элементов S-строк между 1-м и последним элементами

%при 2N небазисных переменных, т.е. при управлениях

CT(j, l : l+1) = [1 -1];

CT(j+1, l : l+1) = [-1 1];

l = l + 2;

end

% Формирование базиса в симплекс-таблице, т.е коэффициентов, стоящих при

%базисных переменных от 2N небазисных переменных до правой части (до 4*N+n+1)

CT(2 : n+2*N+1, 2*N+2 : 4*N+n+1) = eye(n+2*N, n+2*N);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%

РЕШЕНИЕ ЗАДАЧИ БЫСТРОДЕЙСТВИЯ%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%СИМПЛЕКС-МЕТОДОМ%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Цикл смены базисных переменных

nn = size(find(CT(1,2:2*N+1) >= eps));

while nn > 0

[znach, N_stolb] = max(CT(1, 2 : 2*N+1));

N_stolb = N_stolb + 1; % т.к. при небазисн. перемен.

PravChast = CT(:, 4*N+n+2);

for j = 2 : n + 2 * N + 1

if CT(j, N_stolb) > 0

PravChast(j) = PravChast(j) / CT(j, N_stolb);

else

PravChast(j) = inf;

end

end

[znach, N_str] = min(PravChast(2 : n+2*N+1));

N_str = N_str + 1;

% Формирование матрицы перехода B

B = eye(n+2*N+1, n+2*N+1);

B(:, N_str) = CT(:, N_stolb);

% Обращение матрицы B

RE = B(N_str, N_str);

for j = 1 : n + 2 * N + 1

if j == N_str

B(j, N_str) = 1 / RE;

else

B(j, N_str) = -B(j, N_str) / RE;

end

end

%B = inv(B);

% Получение новой симплекс таблицы

CT = B * CT;

nn = size(find(CT(1,2:2*N+1) >= eps));

end

u = zeros(1,N);

% Формирование управления

for j = 2 : n + 2 * N + 1

for i = 2 : 2 * N + 1

if CT(j, i) >= eps

if mod(i, 2) < eps

u(i/2) = CT(j, 4*N+n+2);

else

u((i-1)/2) = -CT(j, 4*N+n+2);

end

end

end

end

% Формирование x1 и x2

X = zeros(n, N);

X(:, 1) = F * X_0 + G * u(1);

for i = 2 : N

X(:, i) = F * X(:, i-1) + G * u(i);

end

% Объединение с начальными условиями

X1 = [X_0(1) X(1, :)];

X2 = [X_0(2) X(2, :)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% проверка на окончание выбора количества шагов

XX = [X_0 X];

% Вычисление нормы вектора состояния

normaXX = norm(XX(:,N))

% Вычисление значения переменной R

R = abs(X_N - F^N * X_0) - FG * u';

R = R';

z = sum(R);

% Погрешность приближения к точному решению

pogresh = 0.3;

if (normaXX < pogresh)

N_opt = N;

break;

else

if (z > h)

if a == 1

alfa = ceil(alfa/2);

end

N = N + alfa;

a = 0;

b = 1;

else

if b == 1

alfa = ceil(alfa/2);

end

N = N - alfa;

a = 1;

b = 0;

end

end

t_perevoda = N * h;

end

N_opt

h

t_perevoda

%%%%%%%%%%%%%%%%%%%%ОФОРМЛЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%В ГРАФИЧЕСКОМ ВИДЕ%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Построение графика x1(t);

figure(1)

t = (0 : 1 : length(X1)-1) * h;

plot(t, X1, 'b', 'LineWidth', 2);

hl=legend('x_1(t)');

set(hl, 'FontName', 'Courier');

xlabel('t, cek'); ylabel('x_1(t)');

grid on

% Построение графика x2(t);

figure(2)

t = (0 : 1 : length(X2)-1) * h;

plot(t, X2, 'b', 'LineWidth', 2);

hl=legend('x_2(t)');

set(hl, 'FontName', 'Courier');

xlabel('t, cek'); ylabel('x_2(t)');

grid on

% Построение графика x2 = x2(x1);

figure(3)

plot(X1, X2, 'm', 'LineWidth', 2);

hl=legend('x_2 = x_2(x_1)');

set(hl, 'FontName', 'Courier');

xlabel('x_1(t)'); ylabel('x_2(x_1(t))');

grid on

% Построение графика u(t)

figure(4)

t = (0 : 1 : length(u)-1) * h;

plot(t, u, 'r', 'LineWidth', 2);

hl=legend('u(t)');

set(hl, 'FontName', 'Courier');

xlabel('t, cek'); ylabel('u(t)');

grid on

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Optimal_L_problem_moments.m

clc

close all

clear all

format long

% ------------------------------------------------------------------------%

b_0 = 5;

b_1 = 9;

% Укороченная система данного объекта

a_5 = 0.1153;

a_4 = 1.78;

a_3 = 3.92;

a_2 = 14.42;

a_1 = 8.583;

a_0 = 0;

% ------------------------------------------------------------------------%

% Приведение системы

b0 = b_0/a_5;

b1 = b_1/a_5;

a5 = a_5/a_5;

a4 = a_4/a_5;

a3 = a_3/a_5;

a2 = a_2/a_5;

a1 = a_1/a_5;

a0 = a_0/a_5;

% ------------------------------------------------------------------------%

% Порядок системы

poryadok = 5;

% Начальные и конечные условия относительно вектора Y

Y_0 = [3 2 1 5]';

Y_T = [0 -1 0 3]';

% Конечное время перехода

T = 3;

% Матрица перехода от Н.У. Y к Н.У. X

B_ = [b0 b1 0 0 0;

0 b0 b1 0 0;

0 0 b0 b1 0;

0 0 0 b0 b1];

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Начальные условия для упорядоченной системы

X_0 = B_' * inv(B_ * B_') * Y_0

X_T = B_' * inv(B_ * B_') * Y_T

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Представление системы в пространстве состояний

A = [0 1 0 0 0;

0 0 1 0 0;

0 0 0 1 0

0 0 0 0 1;

-a0 -a1 -a2 -a3 -a4]

B = [0; 0; 0; 0; 1]

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы