Математическая модель в пространстве состояний линейного стационарного объекта управления

СОДЕРЖАНИЕ

1. Анализ объекта управления

1.1 Анализ линейного стационарного объекта управления, заданного передаточной функцией

1.2 Получение математической модели в пространстве состояний линейного стационарного объекта управления, заданного передаточной функцией

1.2.1 Матрица Фробениуса

1.2.2 Метод параллельной декомпозиции

2. Решение задачи быстродействия симплекс-ме

тодом

3. Оптимальная l – проблема моментов

3.1 Оптимальная l – проблема моментов в пространстве «вход-выход»

3.2 Оптимальная l – проблема моментов в пространстве состояний

4. Нахождение оптимального управления с использованием грамиана управляемости (критерий – минимизация энергии)

5. Аналитическое конструирование оптимальных регуляторов (акор)

5.1 Стабилизации объекта управления на полубесконечном интервале времени

5.1.1 Решение алгебраического уравнения Риккати методом диагонализации

5.1.2 Решение алгебраического уравнения Риккати интегрированием в обратном времени до установившегося состояния

5.2 Стабилизации объекта управления на конечном интервале времени

5.3 Задача акор – стабилизации для компенсации известного возмущающего воздействия.

5.4 Задача акор для отслеживания известного задающего воздействия. i подход

5.5 Задача акор для отслеживания известного задающего воздействия. ii подход (линейный сервомеханизм)

5.6 Задача акор – слежения со скользящими интервалами.

6. Синтез наблюдателя полного порядка

Литература

Приложение

PlotTimeFrHaract.m

ProstranstvoSostoyanii.m

SimplexMetod2.m

Optimal_L_problem_moments.m

Gramian_Uprav.m

AKOR_stabilizaciya_na_polybeskon_interval.m

AKOR_stabilizaciya_na_konech_interval.m

Sravnenie_stabilizacii.m

AKOR_stabilizaciya_pri_vozmusheniyah.m

AKOR_slegenie_na_konech_interval_I_podxod.m

AKOR_slegenie_na_konech_interval_II_podxod.m

AKOR_slegenie_so_skolz_intervalami_Modern.m

Sintez_nablyud_polnogo_poryadka.m

Solve_Riccati_Method_Diag.m

Solve_Riccati_Method_Revers_Integr.m

Vozmyshyayushee_Vozdeistvie_Discrete_Revers.m

Zadayushee_Vozdeistvie_Discrete_Revers_Modern.m

1. Анализ объекта управления

1.1 Анализ линейного стационарного объекта управления, заданного передаточной функцией

Передаточная функция данного объекта имеет вид:

,

где:

, ;

, , , , , .

или

.

Нули передаточной функции:

Полюса передаточной функции (полученные стандартными функциями среды Matlab 7.4):

Рис.1. График расположения нулей и полюсов передаточной функции объекта на комплексной плоскости.

Найдем временные характеристики объекта управления.

К временным характеристикам относятся и .

– переходная характеристика;

– импульсная переходная функция;

Для нахождения и воспользуемся пакетом Matlab 7.4.

,

Аналитическое выражение для :

В этом случае имеет вид

Рис.2. График переходной характеристики .

Рис.3. График переходной характеристики на интервале (увеличенное).

,

Аналитическое выражение для :

.

В этом случае имеет вид

Рис.4. График импульсной переходной характеристики .

Рис.5. График импульсной переходной характеристики на интервале (увеличенное).

Найдем частотные характеристики объекта управления.

К частотным характеристикам относятся:

амплитудно – частотная характеристика (АЧХ),

фазо – частотная характеристика (ФЧХ),

амплитудно – фазовая частотная характеристика (АФЧХ),

Аналитическое выражение для АЧХ:

.

В этом случае АЧХ имеет вид

Рис.6. График АЧХ

Рис.7. График АЧХ на интервале (увеличенное). Аналитическое выражение для ФЧХ:

В этом случае ФЧХ имеет вид

Рис.8. График ФЧХ .

Рис.9. График ФЧХ на интервале (увеличенное).

Рис.10. График АФЧХ.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы