Математическая модель в пространстве состояний линейного стационарного объекта управления

Если линейная стационарная система является полностью управляемой и наблюдаемой, то решение уравнения Риккати при стремится к установившемуся решению не зависящему от и определяется следующим алгебраиче

ским уравнением:

В рассматриваемом случае весовые матрицы и в функционале не зависят от времени.

Оптимальное значение функционала равно

и является квадратичной функцией от начальных значений отклонения вектора состояния.

Таким образом, получаем, что при оптимальное управление приобретает форму стационарной обратной связи по состоянию

где — решение алгебраического матричного уравнения Риккати.

5.1.1. Решение алгебраического уравнения Риккати методом диагонализации

Для решения данной задачи найдем весовые матрицы и :

Выберем произвольно , тогда

Взяв значения из решения задачи L – проблемы моментов получим:

Матрицы системы имеют вид:

, .

Введем расширенный вектор состояния .

Тогда матрица Zбудет иметь следующий вид: ,

или в численном виде

.

Собственные значения матрицы : .

Зная собственные значения и собственные вектора матрицы Z, построим матрицу

По определению все решения должны быть устойчивы при любых начальных условиях , т.е. при . Чтобы не оперировать комплексными числами, осуществим следующий переход. Пусть:

Тогда матрица формируется следующим образом:

.

Можно показать, что матрицу можно получить из прямой матрицы собственных векторов:

,

.

Установившееся решение уравнения Риккати, полученное с помощью скрипта Solve_Riccati_Method_Diag.m. имеет вид:

5.1.2 Решение алгебраического уравнения Риккати интегрированием в обратном времени до установившегося состояния

Весовые матрицы и такие же как и в пункте (5.1.1).

Матрицы тоже аналогичны.

Запишем уравнение Риккати

.

Зная, что , решаем уравнение методом обратного интегрирования на достаточно большом интервале (примерно 10 с.), получим установившееся решение с помощью скрипта

Solve_Riccati_Method_Revers_Integr.m.:

Рис.22. Графики решения уравнения Риккати.

Найдем разницу между решениями уравнения Риккати в пунктах 5.1.1 и 5.1.2:

Выводы: сравнивая решения полученные в пунктах 5.1.1 и 5.1.2 можно сказать, что решения уравнения Риккати первым и вторым методами совпадают с заданной точностью. Погрешность расхождения решений невелика.

Используя скрипт AKOR_stabilizaciya_na_polybeskon_interval.m получим коэффициенты регулятора, фазовые координаты системы и управление.

Рис.23. Графики коэффициентов регулятора обратной связи.

Рис.24. Графики фазовых координат.

Рис.25. График управления.

Выводы: т.к. решения уравнения Риккати методом диагонализации и интегрирования в обратном времени дают практически одинаковый результат, то можно считать, что задача АКОР – стабилизации на полубесконечном интервале решена с заданной точностью.

5.2 Стабилизации объекта управления на конечном интервале времени

Рассмотрим линейный объект управления, описываемый системой дифференциальных уравнений в нормальной форме

Начальные условия для заданной системы

Время стабилизации .

Необходимо получить закон управления

минимизирующий функционал вида

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы