Математическая модель в пространстве состояний линейного стационарного объекта управления
Найдем матрицу управляемости:
Ранг матрицы управляемости равен порядку системы, следовательно, данная система является управляемой.
следовательно .
Собственные числа матрицы найдем из уравнения :
Действительные части собственных значений матрицы являются неположительными, следовательно, все условия управляемости выполнены.
2. Ссылаясь на решение задачи быстродействия из ДЗ№2 по СУЛА «Решение задачи быстродействия» имеем:
Запишем зависимости , , полученные при решении систем дифференциальных уравнений:
:
:
:
:
Перейдем к дискретной модели заданной системы. Имеем
(4)
где шаг дискретизации и соответствующие матрицы
(5)
Пусть управление ограничено интервальным ограничением
(6)
Тогда на шаге имеем
(7)
Известны начальная и конечная точки
где – оптимальное число шагов в задаче быстродействия.
Решается задача быстродействия
а) Формирование задачи быстродействия как задачи линейного программирования
Конечная точка в дискретной модели представлена в виде
(8)
Получаем – равенств
(9)
Для приведения ограничений (9) к канонической форме сделаем необходимое преобразование в правой и левой частях, чтобы правые части были неотрицательными (если правая часть меньше нуля, то домножаем на (-1) левую и правую части). Отметим проведенные изменения точкой в правом верхнем углу соответствующих векторов
. (10)
Для того чтобы получить необходимый допустимый базис для задачи линейного программирования, добавим формально остаточные искусственные переменные (). Таким образом, уравнения (10) представляются в виде
(11)
Так как текущее управление – управление имеет любой знак, то сделаем необходимую замену
Тогда уравнения (11) примут вид
(12)
Введем остаточные переменные в ограничения на управление
(13)
При объединении выражений (12) и (13) получаем ограничений.
Начальный допустимый базис состоит из остаточных и остаточных искусственных переменных
Формируем целевую функцию (по второму методу выбора начального допустимого базиса)
(14)
б) Решение задачи быстродействия
Предположим, что , где – оптимальное число шагов. Так как значение нам неизвестно (но известно точно), выбираем некоторое начальное и решаем задачу линейного программирования (12)-(14).
При этом
Общее число столбцов в симплекс-таблице:
Число базисных переменных:
Сформируем строку. Имеем
Выразим из уравнения (12) начальные базисные переменные
и подставим в целевую функцию. Получим – строку
(15)
Решаем задачу (12) – (14) симплекс-методом.
В случае,
если , – малое число
иначе
1) если увеличить и целое,рвернуться к первому шагу формирования задачи линейного программирования;
Другие рефераты на тему «Экономико-математическое моделирование»:
- Математическое моделирование экономических ситуаций
- Методика эксперимента и расчет технологического режима получения антифрикционного покрытия
- Статистические методы определения экономических показателей
- Имитационная модель автоматизированного участка обработки деталей
- Статистические модели макроэкономики
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели