Математическая модель в пространстве состояний линейного стационарного объекта управления
Числовое значение найденных моментов:
Моментные функции:
Заметим, что моменты и моментные функции совпадают с моментами и моментными функциями, найденными в пункте (а).
Из этого следует, что функционал, значения , управление и минимальная энергия будут иметь точно такие же числовые значения и аналитические выражения, как и в пункте (3.1).
Оптимальное управление имеет вид:
Проверим правильность полученного решения.
Эталонные значения координат в начальный и конечный момент времени:
,
,
Найденные значения координат в начальный и конечный момент времени:
,
,
Вычислим погрешность полученных результатов:
,
,
Ниже представлены графики полученного решения с помощью скрипта Optimal_L_problem_moments.m.
Рис. 18. Графики фазовых координат системы при переходе из в .
Рис. 19. Графики выходных координат системы при переходе из в .
Рис.20. График оптимального управления .
Выводы: Задача перевода системы из начальной точки в конечную с помощью L-проблемы моментов в пространстве состояний и в пространстве вход-выход была решена с точностью до 12-го знака после запятой. Результаты, полученные при переводе системы из начальной точки в конечную, полностью совпадают.
4. Нахождение оптимального управления с использованием грамиана управляемости (критерий – минимизация энергии)
Система имеет вид:
с начальными условиями:
,
.
Составим матрицу управляемости и проверим управляемость системы:
.
Составим грамиан управляемости для данной системы:
Найдем грамиан по формуле:
Тогда управление имеет вид:
.
или
Ниже представлен график оптимального управления полученного с помощью скрипта Gramian_Uprav.m.:
Рис.21. График оптимального управления .
Графики фазовых координат аналогичны, как и в оптимальной L – проблеме моментов.
Сравним управление, полученное в начальной и конечной точках в пунктах 3 и 4 соответственно:
и
Выводы: Как видно, значения граничных управлений совпадают. А это значит, что задача перевода объекта из начального состояния в конечное решена с высокой степенью точности и с минимальной энергией.
Графическое сравнение оптимальных управлений из пунктов 3 и 4:
Рис.21. Сравнение графиков оптимального управления .
5. Аналитическое конструирование оптимальных регуляторов (АКОР)
5.1 Стабилизации объекта управления на полубесконечном интервале времени
Рассмотрим линейный объект управления, описываемый системой дифференциальных уравнений в нормальной форме
Необходимо получить закон управления
минимизирующий функционал вида
Начальные условия для заданной системы
Моменты времени фиксированы. Матрицы — симметричные неотрицательно определенные:
матрица — положительно определенная:
Матричное дифференциальное уравнение Риккати имеет вид:
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели