Анализ состояния финансовых рынков на основе методов нелинейной динамики

Выделяют три интервала значений показателя Херста:

Значение

Поведение случайного временного ряда

Цвет шума

Карикатура долгосрочной зависимости

Данный диапазон соответствует антиперсистентным (эргодическим) рядам. Такой тип системы часто называют – «возврат к среднему». Если система демонстрирует рост в предыдущий период, то, скорее всего, в следующем периоде начнется спад. И наоборот, если шло снижение, то вероятен близкий подъем. Устойчивость такого антиперсистентного поведения зависит от того, насколько близко к нулю. Чем ближе его значение к нулю, тем ближе к , или отрицательной корреляции. Такой ряд более изменчив, или волатилен, чем ряд случайный, так как состоит из частых реверсов спад-подъем.

Розовый шум

Указывает на случайный ряд (броуновское движение, случайные блуждания). События некоррелированы между собой (), настоящее не влияет на будущее.

Функция плотности вероятности может быть нормальной кривой, однако, это не обязательное условие.

Белый шум

Значения показателя , принадлежащие данному диапазону, характерны для персистентных или трендоустойчивых рядов. Они характеризуются наличием долговременных корреляций между текущими событиями и событиями будущими. Если ряд возрастает (убывает) в предыдущий период, то вероятно, что он будет сохранять эту тенденцию какое-то время в будущем. Сила персистентности, увеличивается при приближении к 1, или 100% корреляции (). Чем ближе к 0.5, тем более зашумлен ряд и тем менее выражен его тренд. Персистентный временной ряд является фракталом, поскольку может быть описан как обобщенное броуновское движение или смещенные случайные блуждания.

Черный шум

Персистентные временные ряды являют собой наиболее интересный класс, так как оказалось, что они не только в изобилии обнаруживаются в природе, – это открытие принадлежит Херсту, – но и свойственны рынкам капитала.

4.5 Эмпирический закон Херста

Херст предложил также формулу для оценки величины по значению:

. (6)

В этой формуле предполагается, что константа из соотношения (4) равна .

Федер показал, что этот эмпирический закон имеет тенденцию преувеличивать , когда оно больше , и, наоборот, преуменьшать, если , однако для коротких рядов, где регрессия невозможна, этот эмпирический закон может быть использован как разумное приближение [48].

4.6 Взаимосвязь фрактальной размерности и показателя Херста

Фрактальная размерность временного ряда, или накопленных изменений при случайном блуждании, равна . Фрактальная размерность кривой линии равна , а фрактальная размерность геометрической плоскости равна . Таким образом, фрактальная размерность случайного блуждания лежит между кривой линией и плоскостью.

Показатель Херста может быть преобразован во фрактальную размерность с помощью следующей формулы:

. (7)

Таким образом, если , то . Обе величины характеризуют независимую случайную систему. Величина будет соответствовать фрактальной размерности, более близкой к кривой линии. Это персистентный временной ряд, дающий более гладкую, менее зазубренную линию, нежели случайное блуждание. Антиперсистентная величина дает соответственно более высокую фрактальную размерность и более прерывистую линию, чем случайное блуждание, и, следовательно, характеризует систему, более подверженную переменам.

4.7 Обоснованность оценки Н

Даже если найдена аномальная величина , закономерен вопрос, обоснована ли ее оценка. Можно усомниться в том, достаточно ли было данных, или даже – работает ли вообще R/S-анализ. Для решения этого вопроса предлагается следующий простой тест, основанный на тесте, разработанном Шейнкманом и Ле Бароном для корреляционной размерности [56].

В сущности оценка , которая значительно отличается от , имеет два возможных объяснения:

1. В изучаемом временном ряду имеется долговременная память. Каждое наблюдение коррелирует до некоторой степени с последующими наблюдениями.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы