Разработка методики обучения интегрального исчисления функции двух переменных
так что
Складывая эти неравенства почленно, получим: Отсюда и следует, что Для нижней суммы Дарбу доказательство проводи
тся аналогично.
20. Каждая нижняя сумма Дарбу не превосходит каждой верхней суммы Дарбу, даже если они соответствуют разным разбиениям области . [1].
Доказательство. Разобьем область произвольным образом на части и составим для этого разбиения суммы Дарбу и .
Рассмотрим теперь некоторое другое, никак не связанное с первым, разбиение области на частичные области. Ему также будут отвечать его суммы Дарбу и .
Требуется доказать, что . С этой целью объединим те и другие точки деления; тогда получим некоторое третье, вспомогательное, разбиение, которому будут отвечать суммы и .
Третье разбиение получено из первого добавление новых линий деления; поэтому, на основании доказанного первого свойства сумм Дарбу, имеем
Сопоставив теперь второе и третье разбиения, точно так же заключаем, что .
Но , так что из только что полученных неравенств вытекает , ч. т.д.
Остается справедливым для функции двух переменных следующее неравенство:
, где [1].
Необходимое и достаточное условие интегрируемости функции двух переменных
Теорема. Для существования двойного интеграла необходимо и достаточно, чтобы было или в других обозначениях , где есть колебание функции в частичной области [5].
Доказательство необходимости. Предположим, что существует двойной интеграл от функции f (x, y). Тогда по любому заданному найдется такое , что лишь только все диаметры частичных областей станут меньше , тотчас будет выполняться
или
при любом разбиении области на частичные подобласти и произвольном выборе точек в частичных областях . Но суммы s и S при заданном разбиении области , являются, как было установлено ранее, для интегральных сумм, соответственно, точными нижней и верхней гранями; поэтому для них будут иметь место неравенства
так что
откуда и следует, что [5].
Доказательство достаточности. Предположим, что выполняется условие Тогда из неравенства сразу ясно, что и, если обозначить их общее значение через I, то выполняется неравенство
Пусть теперь – одно из значений интегральной суммы, отвечающей тому же разбиению области (P), что и суммы s и S, тогда, как известно,
Согласно условию , если предположить все достаточно малыми, суммы s и S разнятся меньше, чем на произвольно взятое . Но в таком случае это справедливо и относительно заключенных между ними чисел и : , так что является пределом для , т.е. двойным интегралом [1]. ч. т.д.
Интегрируемость непрерывной функции
Теорема. Всякая непрерывная в области функция интегрируема [1].
Доказательство. Действительно, если функция непрерывна в (замкнутой) области , то по свойству равномерной непрерывности каждому отвечает такое , что в любой части области с диаметром, меньшим чем , колебание функции будет меньше чем . Пусть теперь область разложена на части , диаметры которых все меньше . Тогда все колебания и
Другие рефераты на тему «Педагогика»:
- Реализация компетентностного подхода на уроках истории
- Проблема самообразования в зарубежной педагогической науке
- Формирование произносительных навыков у учащихся на английском языке
- Методика изучения свойств прямоугольного треугольника в курсе геометрии 7-8 классов
- Особенности формирования социально-нравственной личности в условиях сотрудничества детского сада и семьи
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения