Исторический материал на уроках математики как средство активизации познавательной деятельности учащихся

Редко кто из учителей математики, использующий на своих уроках сведения из истории науки, задумывался о пользе этих сообщений в плане воспитания школьников. Так, согласно Г.И. Глейзера, история математики обладает огромным воспитательным воздействием на подрастающее поколение. Это его утверждение относится ко всей гамме представлений о воспитании: внушение потребности к труду, ответственности з

а порученное дело, формирование высокой нравственности, развитие научного любопытства, т.е. желание не только приобретать знания, но и преумножать их. Самое главное в том, что история науки приучает, а потом заставляет быть закономерным, самостоятельно добывать знания. Также большое воспитательное воздействие окажет на учеников сообщение об огромной роли А.Н. Крылова, С.А. Колмогорова, Н.Г. Четаева и других в создании и совершенствовании новой военной техники. Так, работы А.Н. Колмогорова во время Второй мировой войны способствовали созданию теории артиллерийской стрельбы. А.Н. Колмогоров изучал явления рассеивания артиллерийских снарядов. Знакомство с биографиями крупных ученых, с методами их работы дает исключительно много для формирования характера учащихся, их идеалов и высоких стремлений, на этом основывается преподавание истории математики у Б.В. Гнеденко. Так, при сравнении биографий С.В. Ковалевской и П.Я. Кочиной, школьники увидят два мира, две эпохи, две судьбы. С.В. Ковалевская не была принята в университет, ей не разрешили работать в России, П.Я. Кочина же окончила Ленинградский университет, работала в Академии наук СССР, ей присвоено звание Героя Социалистического труда. Однако вклад обеих женщин-математиков в развитие науки очень велик.

Эстетический потенциал математики в практике обучения часто недооценивают. Однако на протяжении веков пути математики и различных видов искусства переплетались. Поэтому исторические сведения предоставляют благодатный материал для развития эстетического вкуса школьников. Зачастую в кругу цифр и математических знаков мы не замечаем всей красоты и логичности доказательств этой науки. Красоту науки когда-то заметил Н.Е. Жуковский. Он писал: «В математике есть своя красота, как в живописи и в поэзии». Многие ученые, занимавшиеся исследованиями в области математики, были не только математиками, но физиками и химиками, как Ньютон, Паскаль и Эйлер, и даже поэтами. Философом и поэтом является известный математик Омар Хайям. Вот одно из его четверостиший:

Чтоб мудро жизнь прожить, знать надобно немало.

Два важных правила запомни для начала:

Ты лучше голодай, чем что попало ешь,

И лучше будь один, чем вместе с кем попало.

Другой пример – математик Чарльз Л. Доджсон, известный больше под псевдонимом Льюис Кэрролл как автор сказки «Алиса в стране чудес». Как рассказывают биографы, королева Виктория пришла в восторг от этой книги и захотела прочитать все книги, написанные Кэрроллом. Можно представить ее разочарование, когда она увидела на своем столе стопку книг по математике. И даже известная нам математик-женщина Софья Васильевна Ковалевская обладала незаурядным литературным талантом. Ее перу принадлежат такие произведения: драма «Борьба за счастье», роман «Нигилистка» и другие.

Решать уравнение вида: х-ау=1, по-видимому, умел и Архимед, находим мы в книге Н.Я. Виленкина. Недаром Архимед послал в Александрию Эратосфену следующий стихотворный вызов:

Сколько у Солнца быков, найди для меня, чужестранец

(Ты их, подумав, сосчитай, мудрости если не чужд),

Как на полях Тринакрийской Сицилии острова тучных

Их в четырех стадах много когда-то паслось.

Цветом стада различались: блистало много млечно – белым,

Темной морской волны стада другого был цвет.

Рыжим третье было, последнее пестрым. И в каждом

Стаде была самцов множеством тяжкая мощь,

Все же храня соразмерность такую: представь чужестранец,

Белых быков в точности было ровно…

То, что древние математики были прекрасными поэтами, можно видеть из приведенных примеров. Эти произведения помогут показать ученикам красоту не только самой математики, но и поэзии, прозы и других древних сочинений. При этом исторические сведения помогут сосредоточить и сконцентрировать внимание учащихся на изучении программного материала, помогут надолго сохранить в памяти те факты, которые были красиво описаны с помощью литературы.

В стихах, приведенных выше, также встречаются географические названия: Александрия, Тринакрийская Сицилия и другие. При сообщении учащимся исторических сведений, если учитель приведет карты древние и современные, то ученики наиболее полно представят себе картину времени, когда произошло математическое открытие. При рассмотрении карт ученики могут найти древние города, например, город Александрию, и затем ответить на вопросы: каким морем омывается город? (Средиземным); с какой рекой связаны истории этого города?; к какой стране принадлежит Александрия? (Египет); назвать главную реку Египта и ее природные особенности? (Нил); перечислить известных людей, проживавших в Александрии? (Евклид, Эратосфен, Апполоний, Герон, Гиппарх, Птолемей, Диофант). Такая работа позволяет развивать воображение, мышление учащихся и тем более поможет лучше разобраться в географических местах и надолго отложиться в памяти детей, так как эти знания были добыты путем сопоставления карт. Приведенный в примерах Диофант занимался изучением методов решения уравнений. Уравнения, решаемые в целых числах так и назвали Диофантовыми уравнениями. А также с его именем связаны понятия Ал-джебра и Ал-мукабала.

Ал-джебра

При решении уравненья,

Если в части одной,

Безразлично какой,

Встретится член отрицательный,

Мы к обеим частям,

С этим членом сличив,

Равный член придадим,

Только с знаком другим,

И найдем результат нам желательный.

Ал-мукалаба

Дальше смотрим в уравненье,

Можно ль сделать приведенье,

Если члены в нем подобны,

Сопоставить их удобно,

Вычтя равный член из них,

К одному приводим их.

После изучения подобных стихов можно выводить современные методы решения линейных уравнений: перенос слагаемых их одной части уравнения в другую, деление и умножение обеих частей уравнения на одно и то же число.

Исследования Н.Я. Виленкина в области истории науки математики, показывают, что математикой занимались не только профессионалы. Эта наука притягивала внимание многих людей. Так, например, в «Маленьком принце», замечательной сказке французского писателя А. Де Сент-Экзюпери, Лис спрашивает Маленького принца:

– А на той планете есть охотники?

– Нет.

– Как интересно! А куры есть?

– Нет.

– Нет в мире совершенства! – вздыхает Лис.

Н.Я. Виленкин предлагает поспорить о не существовании совершенства в мире и именно с этого литературного текста начать беседу о совершенных числах – числах, делители которых в сумме дают само число.

Опытный учитель с привлечением истории математики к объяснению нового материала сможет показать ученикам значимость математики среди других наук, изучаемых в школе, и их неразрывную связь. Из вышеуказанных примеров видно, что при использовании географических карт, литературных произведений, биографий ученых история математики позволяет установить межпредметные связи, которые очень легко можно проследить на каждом уроке.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы