Методика разработки и использования средств информационно-коммуникационных технологий для формирования геометрической компетентности учащихся основной школы

Интеллектуальное воспитание и интеллектуальное развитие - два взаимосвязанных, но не тождественных, аспекта образовательного процесса. В связи с этим, рассмотрена теория интеллектуального воспитания учащихся, основанная на онтологической концепции интеллекта, в соответствии с которой интеллектуальное воспитание - создание условий для совершенствования интеллектуальных возможностей каждого ребён

ка за счет обогащения его умственного опыта (М.А. Холодная). Анализ содержания этой теории и теорий в рамках когнитивного подхода в психологии, личностно-ориентированного и компетентностного подходов в обучении, исследование возможностей использования их основных положений при разработке проблемы осуществления интеллектуального воспитания учащихся при обучении геометрии показали, что в организации обучения геометрии должно найти отражение следующее.

Во-первых, для создания предпосылок успешного осуществления сложного процесса переработки информации, нужно соблюдать соответствие учебного материала когнитивным процессам (когнитивный аспект умственного опыта). Поэтому необходимо исследовать возможности представления учебного содержания школьного курса геометрии в виде различных моделей, для адекватного использования их учениками, как одного из средств обучения различным способам кодирования учебной информации курса геометрии.

Во-вторых, в соответствии с современными тенденциями построения содержания образования в качестве необходимых единиц усвоения, кроме теоретического компонента, должны быть выделены знания о знаниях, способах их добывания, открытия, условиях использования и др. – метазнания и метаумения (В.П. Беспалько, И.Я. Лернер, Н.Ф. Талызина, И.С. Якиманская и др.). В них раскрывается организация интеллектуальной деятельности субъекта, т.к. они выполняют функцию инструмента познания. Следовательно, возникает необходимость выявления в школьном курсе геометрии таких средств, использование которых позволит ученику регулировать процесс учебно-познавательной деятельности при усвоении содержания школьного курса геометрии (метакогнитивный аспект умственного опыта).

В-третьих, установлено, что обогащение эмоционально-оценочного опыта учащихся осуществляется через развитие познавательного интереса, активизирующего учебную деятельность учащихся, а также через предоставление ученику возможности построения собственной «образовательной траектории», что предполагает формирование у школьников психологической структуры деятельности (И.Я. Лернер, А.В. Хуторской, Т.И. Шамова, Г.И. Щукина и др.). Поэтому задаче обогащения этой формы умственного опыта при обучении геометрии необходимо подчинить все компоненты методической системы обучения, что позволит создать положительную мотивацию и активизировать познавательный интерес учащихся к процессу изучения школьного курса геометрии (эмоционально-оценочный аспект умственного опыта).

Процесс обучения геометрии в условиях интеллектуального воспитания рассматривается как активная целенаправленная интеллектуальная деятельность ученика. Активность – результат внутреннего процесса целенаправленной саморегуляции человека (Л.С. Выготский, О.А. Конопкин, Н.А. Менчинская, В.И. Моросанова и др.). Внешнее выражение саморегуляции – управление собственной деятельностью – то есть, такое воздействие на процесс, которое ведёт к достижению поставленных целей (В.П. Беспалько, В.Л. Матросов, В.А. Трайнев, В.Д. Шадриков и др.).

Итак, в методической системе обучения геометрии, направленной на интеллектуальное воспитание учащихся, должны быть отражены все указанные аспекты умственного опыта ученика и объединяющий их, аспект саморегуляции учеником собственной учебно-познавательной деятельности. Содержание индивидуального умственного опыта, обогащение которого происходит в процессе активной целенаправленной интеллектуальной деятельности учащихся при изучении геометрии, определяется трансформацией указанных аспектов в организацию этого процесса. Именно в организации процесса обучения математике, в частности, - геометрии, лежит причина трудностей учащихся. А.Н. Колмогоров, Б.В. Гнеденко и др. считали, что для усвоения курса математики общеобразовательной школы достаточны обычные средние способности. Главное, что ученику необходимы навыки управления своей учебно-познавательной деятельностью, общие и специфические для усвоения геометрии умения, содействующие его интеллектуальному становлению.

Во втором параграфе «Роль школьного курса геометрии в развитии интеллектуальных способностей» представлена часть категориального аппарата, связанная с понятием «интеллектуальное умение» для которого родовым является понятие интеллектуального действия (А.В. Запорожец), и результаты анализа соотношения понятий «умения» и «способности». С.Л. Рубинштейном отмечено, что интеллектуальная деятельность регулируется с помощью определённых умений, которые, включаясь в уже существовавшую целостную систему умений ученика, развивают его интеллектуальные способности. Анализ исследований, связанных с экспериментально - психологическими теориями интеллекта, позволил выявить основополагающие для школьного курса геометрии способности, характеризующие развитый интеллект человека. Это - понимание, моделирование, способность к индуктивному и дедуктивному рассуждениям, и обучаемость, как результат их развития.

Особое место в процессе обучения геометрии занимает преобразование информации способом алгоритмизации, в результате использования которого декларативные знания преобразуются в процедурные (предписания), что необходимо для усвоения геометрии. Наличие предписаний, содержащих в себе эвристическую составляющую, является естественным для специфики предмета геометрии. Анализ методов решения геометрических задач, выполненный с целью выяснения возможностей использования предписаний для их решения, показал, что алгоритмизации подлежат задачи на построение и задачи, решаемые аналитическими методами (таблица 2). Наглядным способом фиксации структурных взаимосвязей между данными и искомыми объектами является блок-схемная форма записи предписаний, которая отражает сочетание визуального и словесно-речевого способов кодирования информации, а процесс составления и использования блок-схем – предметно-практический и сенсорно-эмоциональный способы.

Таблица 2 Перечень типов и классов геометрических задач школьного курса геометрии, подлежащих алгоритмизации

Типы задач

Классы задач, для решения которых используются предписания (продукционные модели)

I – задачи на геометрические построения

Задачи на построение плоских фигур

- методом геометрических мест точек

- методом подобия

Задачи на построение на проекционном чертеже:

- построение сечений многогранников

- построение изображений пирамид, призм, круглых тел

- построение изображений перпендикуляров и связанных с ними - изображений элементов фигур

II – задачи на векторный метод  

Задачи:

- на выполнение операций над векторами

- на доказательство равенства векторов

- на доказательство коллинеарности векторов

- на доказательство перпендикулярности векторов

III – задачи на координатный метод  

Задачи:

- на применение координат двух точек и, сводящиеся к ним

- связанные с окружностью

- связанные с прямой

- на вычисление координат вектора

- на разложение вектора по двум неколлинеарным векторам

- на доказательство равенства векторов

- на доказательство коллинеарности векторов

- на доказательство перпендикулярности векторов

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32  33  34  35  36  37  38  39  40  41  42  43  44  45 
 46  47  48  49  50  51  52  53  54 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы