Автоматизация шлифовального процесса путем разработки автоматической системы управления регулируемым натягом

(3.5).

Учитывая выражения (4) и (5), преобразуем систему уравнений (3) к следующему виду:

(3.6)

где

L1 = l1l + 1,5×l10 = l1l + L0 - полная индуктивность фазы статора.

Рассуждая аналогичным образом относительно обмотки ротора, получим следую

щие выражения для фазных потокосцеплений роторной обмотки с собственным потоком:

(3.7)

где

L2 = l2l + L0 - полная индуктивность фазы ротора.

Определяем величину общего потокосцепления фазы A статора, созданного намагничивающими силами статора и ротора:

или, учитывая, что I2a + I2b + I2c = 0 и :

Выразив аналогичным образом потокосцепления для фаз статора B и C, запишем следующую систему уравнений:

Учитывая, что и , умножим первое уравнение системы (8) на , второе на , третье на и просуммируем полученные произведения:

или

(3.9).

Таким же образом получим формулу потокосцепления ротора:

. (3.10)

Объединив уравнения (2), (10) и (11), получим систему уравнений обобщенного асинхронного двигателя:

(3.7)

где

L0 - взаимная индуктивность обмоток статора и ротора,

L1 - индуктивность статора от потоков рассеяния,

L2 - индуктивность ротора от потоков рассеяния.

3.13 Регулирование осевого перемещения ротора

Величина ЭДС в статорной обмотке Е1 двигателя определяется частотой тока ¦1, магнитным потоком Фм и параметрами статорной обмотки (R об., W).

E1=и1и2и3¦1W1RобФм. (3.12)

Приближенно для напряжения на стартере U1»E1

При этом

Фм=a*i*t*B0, (3.13)

где

i, t -геометрические параметры стартера

a- коэфициент полюсного перекрытия (a=0.6¸0.8)

B0- магнитная индукция в зазоре.

Из уравнений следует, что:

U1 =и1и2и3¦1W1Rобa*i*t*B0, (3.14)

Откуда

B0=U/KU*¦1, (3.15)

где

КU= и1и2и3W1Rобa*i*t

Примем в качестве допущения, что B0=соnst внутри статора (на участке L), а за его пределами уменьшается по экспотенциальному закону.

B0=B0е-Кх

Элементарная сила dFа приложенная к участку ротора шириной dx

dFa=kFB2dx= kFB20 e-2Kx dx

после интегрирования получаем:

Fa= (3.16)

Для малых смещений может быть использованна линейная модель зависимости силы от величины смещения.

Fa=KF*B20x=

Момент, развиваемый двигателем:

M=, (3.17)

где

S-скольжение ротора

Ri -параметры сопротивления обмоток

w=2p¦1 – круговая частота

То есть

M»Cm

и значит:

Fa==

Регулирование происходит путем управления ¦ на входе в преобразователь на выпрямителе. Здесь задается от ЧПУ мощность привода так как система ШИМ позволяет производить регулирование на мощностях меньше наминала. Далее тиристорный инвертор увеличивая и уменьшая U в обмотках статора компенсирует силу Fa смещением ротора магнитным полем, также производя регулирование скорости вращения о момента на валу.

Определим величины потокосцеплений статора и ротора. Предположим, что статор и ротор трехфазного асинхронного двигателя имеют симметричные обмотки, воздушный зазор по всей окружности ротора одинаков, магнитное поле в воздушном зазоре распределено синусоидально, оси обмоток статора и ротора не совпадают, образуя произвольный угол j (рис. 3.17).

4. Бжд

4.1 Анализ опасных и вредных факторов, возможных чрезвычайных ситуаций технического процесса

При механической обработке металлов, пластмасс и других материалов на металлорежущих станках (токарных, фрезерных, сверлильных, шлифовальных, заточных и др.) возникает ряд физических, химических, психофизиологических и опасных биологических и вредных производственных факторов.

Движущиеся части производственного оборудования, передвигающиеся изделия и заготовки; стружка обрабатываемых материалов, осколки инструментов, высокая температура поверхности обрабатываемых деталей и инструмента; повышенное напряжение в электроцепи или статического электричества, при котором может произойти замыкание через тело человека - относятся к категории опасных физических факторов.

Так, при обработке хрупких материалов (чугуна, латуни, бронзы, графита, карболита, текстолита и др.) на высоких скоростях резания стружка от станка разлетается на значительное расстояние (3—5 м). Металлическая стружка, особенно при точении вязких металлов (сталей), имеющая высокую температуру (400—600 °С) и большую кинетическую энергию, представляет серьезную опасность не только для работающего на станке, но и для лиц, находящихся вблизи станка. Наиболее распространенными у станочников являются травмы глаз. Так, при токарной обработке от общего числа производственных травм повреждение глаз превысило 50%, при фрезеровании 10% и около 8% при заточке инструмента и шлифовании; Глаза повреждались отлетающей стружкой, пылевыми частицами обрабатываемого материала, осколками режущего инструмента и частицами абразива.

Вредными физическими производственными факторами, характерными для процесса резания, являются повышенная запыленность и загазованность воздуха рабочей зоны; высокий уровень шума и вибрации; недостаточная освещенность рабочей зоны; наличие прямой и отраженной блескости; повышенная пульсация светового потока. При отсутствии средств защиты запыленность воздушной среды в зоне дыхания станочников при точении, фрезеровании и сверлении хрупких материалов может превышать предельно допустимые концентрации. При точении латуни и бронзы количество пыли в воздухе помещения относительно невелико (14,5-20 мг/м3). Однако некоторые сплавы (латунь ЛЦ40С и бронза Бр ОЦС 6-6-3) содержат свинец, поэтому токсичность пыли.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы