Использование нечеткой искусственной нейронной сети TSK (Takagi, Sugeno, Kang’a) в задаче прогнозирования валютных курсов

Реферат

Ключевые слова: прогнозирование, нечеткая нейронная сеть, нечеткость, валютные курсы, TSK.

В данной работе рассматривается прогнозирование валютных курсов. Рассматривалась искусственная нечеткая нейронная сеть TSK. В качестве критерия правильности прогноза были выбраны средний квадрат отклонения и средняя абсолютная процентная погрешность. ННС TSK сравнивается с методом экспон

енциального сглаживания и с искусственной нейронной сетью с кубическими сплайнами. Были получены результаты, которые свидетельствуют о том, что рассматриваемый искусственная нейронная сеть может быть использованы в деятельности банков и других инвесторов.

Введение

Повышение эффективности краткосрочных операций с валютой – одна из важнейших задач в деятельности банков и других инвесторов. Ежедневно (а иногда и несколько раз в день) банки продают и покупают различные валюты в значительных объемах, стремясь придать движение имеющимся в наличии свободным валютным резервам с целью избежать потерь от конъюнктурных колебаний курсов и получить дополнительную прибыль. Эффективность валютных операций существенным образом зависит он надежности прогнозов колебаний курсов валют. Именно поэтому краткосрочное прогнозирование курсов имеет большое практическое значение для оперативной деятельности банков и прочих инвесторов, а вопрос о возможности применения статистических методов для этой цели представляется актуальным.

Информация о динамике курсов национальных валют создает впечатление хаотического движения: падение и рост курсов сменяют друг друга в каком-то случайном порядке. Даже если за большой интервал времени отмечается тенденция, например, к росту, то на графике легко можно увидеть, что эта тенденция прокладывала себе путь через сложные движения временного ряда курса валюты. Направление ряда все время меняется под воздействием нерегулярных и часто неизвестных сил. Исследуемый объект в полной мере подвержен воздействию стихии мирового рынка, и точной информации о будущем движении курса нет. Необходимо сделать прогноз.

В данной курсовой работе предпринята попытка прогнозирования валютных курсов с использованием искусственной нейронной сети.

Раздел 1. Область исследований

1.1 Важность задачи прогнозирования

В наше время перед человечеством стоит задача прогнозирования различных важных с точки зрения прикладной деятельности человека показателей. Эти показатели могут быть физическими, социальными и экономическими. Жизненно важным для человечества является задача своевременного прогнозирования землетрясений, цунами, повышенной солнечной активности. Не менее важной задачей прогнозирования является прогнозирование социальных показателей, таких как: численность народонаселения, уровень смертности, градация граждан по возрастному цензу в будущем. В условиях рыночной экономики для обеспечения населения необходимыми товарами и услугами, а также для обеспечения нормального функционирования экономики требуется прогнозировать следующие макроэкономические показатели: валовой внутренний продукт, валовой внутренний продукт, внешнеэкономическое торговое сальдо, курсы национальных валют.

1.2 Существующие методы прогнозирования

Одним из самых первых и распространенных методов прогнозирования является метод наименьших квадратов (МНК). В основе этого метода лежит гипотеза о том, что временной ряд имеет линейный тренд. Данное допущение в задаче краткосрочного прогнозирования валютных курсов является недопустимым.

В середине двадцатого века независимо друг от друга Браун и Холт предложили метод экспоненциального сглаживания. Суть метода состоит в том, что прогноз на следующий шаг является взвешенной суммой предыдущих, уже известных членов временного ряда. Веса при членах временного ряда экспоненциально уменьшаются со временем.

В 60-х годах двадцатого века Калманом был предложен метод фильтрации, позже названный в его честь. Суть данного метода состоит в представлении временного ряда в модели пространстве состояний [2].

Метод Группового Учета Аргументов (МГУА) разрабатывается академиком НАН Украины А.Г. Ивахненко и его школой, с 60-х годов двадцатого века, и является типичным методом индуктивного моделирования и одним из наиболее эффективных методов структурно-параметрической идентификации сложных объектов, процессов и систем по данным наблюдений в условиях неполноты информации.

Искусственные нейронные сети являются перспективным направлением в создании искусственного интеллекта и еще одним инструментом, позволяющим осуществлять прогнозирование.

Раздел 2. Описание выбранных инструментов

2.1 Общая характеристика нечетких нейронных сетей

Нечеткие искусственные нейроны, так же называемые нейронными клетками, узлами модулями, моделируют структуру и функции биологических нейронов. Архитектура и особенности нечетких искусственных нейронных сетей, состоящих из нейронов, зависит от конкретных задач, которые будут решаться с их помощью.

Соединенные между собой нейроны создают искусственную нейронную сеть (ИНС). Таким образом ИНС – это пара (M, V), где M – множество нейронов; V – множество связей. Структура сети задается в виде графа, в котором вершинами являются нейроны, а ребрами являются связи.

ИНС могут быть применены в следующих областях и для решения следующих задач: аппроксимация функций, создание ассоциативной памяти, архивирование данных, распознавание и классификация, оптимизационные задачи, управление сложными процессами, прогнозирование, нейрокомпьютеры.

Нечеткие нейронные сети (ННС) применяются в системах с нечеткой логикой. ННС помогают снять неопределенность в задачах, где входные переменные заданы интервально

2.2 Общая характеристика среды программирования Delphi 7

Для программной реализации искусственной нейронной сети, рассматриваемой в данной курсовой работе, была использована визуальная среда программирования Delphi 7. Выбор был обусловлен возможностью быстрого написания приложения с удобным пользовательским интерфейсом для семейства операционных систем Windows и Linux.

Раздел 3. Математическое описание задачи

3.1 Описание общей задачи прогнозирования валютных курсов

В данном подразделе рассматривается прогнозирование валютных курсов. Объектом исследования является временной ряд последовательных ежедневных данных (наблюдений) о динамике валютных пар, который будем записывать как

где – длина ряда.

Исходные ряды исследуются на абсолютную случайность. Проверяется, не являются ли они белым шумом. В качестве критериев случайности используются: критерий поворотных точек, критерий распределения длины фазы и критерий, основанный на знаках разностей [1].

В целом, проведенное автором работы изучение исходных рядов валютных курсов показало, что, несмотря на сильную колеблемость ежедневных данных, они не являются совершенно случайными.

3.2 Описание структуры ННС TSK

На рисунке 1 приводится структура нейронной сети TSK. Выделяются следующие характеристики, свойства, особенности и функциональные элементы сети:

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27 


Другие рефераты на тему «Программирование, компьютеры и кибернетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы