Использование нечеткой искусственной нейронной сети TSK (Takagi, Sugeno, Kang’a) в задаче прогнозирования валютных курсов

1) Обучение проводится с учителем. Т.е. для каждого входного вектора имеется желаемое для выхода значение.

2) Выборка разбивается на 2 части: обучающая и проверочная.

Обобщенную схему вывода в модели TSK при использовании правил и переменных t=25 src="images/referats/8196/image004.png">можно представить в следующем виде:

, то ;

, то

где - значение лингвистической переменной для правила с функцией принадлежности (ФП)

, ,

В нечеткой нейронной сети TSK пересечение правил определяется ФП в форме произведения, т.е.

При правилах вывода композиция исходных результатов сети определяется по следующей формуле (аналогично выводу Сугено):

где ,

Нечеткая нейронная сеть TSK задается многослойной структурной сетью, представленной на рисунке 1. В такой сети выделяют 5 слоев.

1. Первый слой выполняет раздельную фаззификацию каждой переменной , , определяя для каждого -го правила вывода значение ФП в соответствии с функцией фаззификации. Это параметрический слой с параметрами , которые подлежат адаптации в процессе обучения.

2. Второй слой выполняет агрегирование отдельных переменных , определяя результирующую степень принадлежности для вектора условиям -го правила. Это не параметрический слой.

3. Третий слой представляет собой генератор функции TSK, в котором рассчитывается значения . В этом слое также происходит умножение функции на , сформированных на предыдущем слое. Это параметрический слой, в котором адаптации подлежат линейные параметры (веса), для , , определяющие функции последствий правил.

4. Четвертый слой составляют 2 нейрона-сумматора, один из которых рассчитывает взвешенную сумму сигналов , а второй определяет сумму весов .

5. Пятый слой состоит из одного единственного нейрона. В нем веса подлежат нормализации и вычисляется выходной сигнал в соответствием с выражением

Это так же не параметрический слой.

Из приведенного описания следует, что нечеткая сеть TSK содержит только 2 параметрических слоя (первый и третий), параметры которых уточняются в процессе обучения. Параметры первого слоя () будем называть нелинейными, а параметры третьего слоя - линейными весами.

Общее выражение для функциональной зависимости для сети TSK задается так:

Рисунок 1. Структура ННС TSK

3.3 Алгоритм обучения

Рассмотрим гибридный алгоритм обучения. В гибридном алгоритме параметры, подлежащие адаптации, делятся на 2 группы. Первая из них состоит из линейных параметров третьего слоя, а вторая группа – из параметров нелинейной ФП первого слоя. Уточнение параметров происходит в 2 этапа.

На первом этапе при фиксации отдельных значений параметров функции принадлежности, решая систему линейных уравнений, рассчитываются линейные параметры полинома TSK. При известных значениях ФП зависимость для выхода можно представить в виде линейной формы относительно параметра :

, где ,

При размерности обучающей выборки , и замене выходного сигнала сети ожидаемым значением получим систему из линейных уравнений вида

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27 


Другие рефераты на тему «Программирование, компьютеры и кибернетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы