Методические особенности изучения тригонометрических уравнений в общеобразовательной школе

Понятия арксинуса, арккосинуса, арктангенса вводятся до знакомства с обратными тригонометрическими функциями (тригонометрические функции изучаются в 11 классе) и иллюстрируются также на единичной окружности. В дальнейшем не следует уделять много внимания упражнениям на нахождение значений и использование свойств арксинуса, арккосинуса, арктангенса: все это будет закрепляться в ходе решения урав

нений. При решении уравнений полезно иллюстрировать нахождение корней на единичной окружности: это позволит осознанно применять формулы корней.

Решение более сложных тригонометрических уравнений рассматривается на примерах уравнений, сводящихся к квадратным, уравнений вида , уравнений, решаемых разложением левой части на множители.

Материал в учебнике соответствует обязательному минимуму обучения, весьма доступен для учащихся 10 класса. Можно даже заметить, что авторы при решении уравнений предлагают иллюстрировать нахождение корней на единичной окружности, в дальнейшем это позволит избежать вопросов о количестве корней тригонометрического уравнения и частично ликвидирует трудность в восприятии учащимися таких элементов, как и . Однако у ученика 10 класса так и остаются невыясненными вопросы, связанные с понятием арксинуса, арккосинуса и арктангенса, с появлением периода в записи ответа к тригонометрическому уравнению, с появлением множителя и, наконец, проблема отбора корней так и остается открытой.

Т.е. мы видим, что в учебнике Ш.А. Алимова и др. решенным является вопрос учеников о количестве корней тригонометрического уравнения, но при изложении материала по тригонометрии мы снова сталкиваемся с известной схемой изложения материала «функция – преобразования – уравнения». Т.е. снова формулы выведены на первое место, а простейшим уравнениям внимания уделено недостаточно.

IV. Ю.М. Колягин, Ю.В. Сидоров, М.Ю. Ткачева, Н.Е. Федорова, М.И. Шабунин «Алгебра и начала анализа 10 класс».

Количество часов, отведенных на тему «Тригонометрические уравнения», совпадает с количеством часов, отведенных на данную тему в учебнике Ш.А. Алимова и др. Рассмотрим содержание учебного материала.

Уравнения , . Уравнения , . Решение тригонометрических уравнений. Различные приемы решения тригонометрических уравнений. Уравнения, содержащие корни и модули. Системы тригонометрических уравнений. Появление посторонних корней и потеря корней тригонометрических уравнений.

Структура изложения материала по теме «Тригонометрические уравнения» в данном учебнике во многом совпадает с учебником Ш.А. Алимова, поэтому подробно останавливаться на анализе этого учебника мы не будем. Отметим только то, что в данном учебнике частично есть ответ на вопрос учащихся об отборе корней. Также здесь до понимания учащихся доведен тот момент, что корни уравнения находятся по формуле

Значит, у нас остаются невыясненными только те моменты, которые связаны с множителем и с добавлением периода при записи корней тригонометрического уравнения.

V. М.И. Башмаков «Алгебра и начала анализа 10-11 класс»

Отметим, что в этом учебнике тема «Тригонометрические уравнения» отдельно не выделена и тригонометрические уравнения изучаются в контексте темы «Тригонометрические функции и тригонометрические уравнения». Поэтому здесь мы будем рассматривать содержание учебного материала по теме «Тригонометрические функции и тригонометрические уравнения».

На изучение всей темы здесь отводится 40 часов.

Тригонометрические функции числового аргумента: синус, косинус, тангенс; их свойства и графики. Периодичность функций. Тождественные преобразования тригонометрических выражений. Простейшие тригонометрические уравнения. Решение тригонометрических уравнений.

Основная цель: - изучить свойства и графики тригонометрических функций, научиться решать простейшие тригонометрические уравнения и познакомить учащихся с некоторыми приемами решения тригонометрических уравнений.

Таким образом, мы снова видим схему «функция – преобразования – уравнения». Более того, в этом учебнике не решается проблема осуществления отбора корней уравнения, но зато до понимания учащихся доводится смысл записи .

Кроме всего прочего, в данном учебнике представлен незначительный объем задач по теме «Тригонометрические уравнения» и нет возможности осуществления дифференцированного подхода к учащимся.

Таким образом, мы видим, что ни один из представленных учебников в полной мере не решает основных трудностей, возникающих при изучении темы «Тригонометрические уравнения». Почему? Может быть потому, что при изложении материала в этих учебниках не реализован один из основных дидактических принципов – «от простого к сложному». Рассмотрим еще один учебник, в котором этом принцип, на мой взгляд, реализуется в полной мере.

Для учебника, который будет представлен, характерна следующая схема построения материала – «функция – уравнения – преобразования». При изучении тригонометрии эта схема вызывает у учителей множество возражений, одно из которых заключается в том, что изучать тригонометрические уравнения, если учащиеся не знают формул тригонометрии, невозможно. А.Г. Мордкович отвечая на это возражение, говорит, что целесообразнее сначала изучить «простые модели» (таковыми в математике являются основные элементарные функции), а уж потом переходить к изучению «сложных моделей» (таковыми в математике являются сложные выражения, которые надо упрощать, используя формульный аппарат). А как обстоит дело в тригонометрических уравнениях? Примерно так же: сначала надо разобраться с «элементарными моделями», т.е. с простейшими тригонометрическими уравнениями и уравнениями, которые сводятся к простейшим с помощью алгебраических приемов, и только потом переходить к «сложным моделям», т.е. уравнениям, которые надо сначала долго и упорно «раскручивать», используя рутинный аппарат формул. Обычная методическая ошибка в изучении тригонометрии в школе в последние годы заключается в следующем: школьникам не дают возможности разобраться со спецификой собственно тригонометрических уравнений – простейших уравнений типа

А ведь в этих уравнениях заложено много новых дидактических компонентов, каждый из которых требует внимания, уважения, а значит, и времени. Перечислим эти компоненты.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы