Частично насыщенные формации с заданной структурой подформаций

где . И пусть --- внутренний -локальный спутник формации такой, что

По теореме такие спутники существуют. Тогда по лемме получаем, что формация имеет такой -локальный спутник , что

, если ,

.

По лемме имеем, что , где монолитическая группа с минимальной нормальной подгруппой , что , и либо и --- -нильпотентный корадикал группы , либо , и выполняется одно из следующих условий:

(1) группа неабелева, причем, если , то --- -группа, если же , то --- простая неабелева группа;

(2) , где --- -группа, а такая монолитическая группа с минимальной нормальной подгруппой , что , , --- -группа, и либо , либо --- группа порядка q, где .

Поскольку , то .

Пусть удовлетворяет условию (1), т.е. --- неабелева -группа. Поскольку, очевидно, --- -насыщенная формация, то . Но --- единственная минимальная нормальная подгруппа.

Следовательно, . Но по лемме . Тогда, так как , то получаем . Поэтому

Поскольку --- минимальная -насыщенная не -формация, то имеем, что . Противоречие.

Пусть теперь для группы выполняется условие (2), т.е. . Так как , то

Поскольку и , то . Поэтому

Но тогда . Снова получили противоречие.

Пусть теперь --- -группа. Заметим, что если --- неабелева, то этот случай аналогичен (1). Значит, --- абелева -группа, где .

Покажем, что . Поскольку , то по лемме -дефект формации . С другой стороны, -дефект формации , так как . Значит, -дефект равен 1. Поэтому в существует максимальная -насыщенная -нильпотентная подформация . Следовательно,

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы