Частично насыщенные формации с заданной структурой подформаций

для всех ;

, где и для всех ;

Формация -локальна.

Доказательство. Импликация доказана в работе . Пусть выполняется условие 2) и Включение очевидно. Предположим, что обратное включение неверно и --- группа минимального порядка из с минимальной нормальной подгруппой . Если --- -группа, то . Значит

противоречие. Следовательно, . Пусть . Если --- неабелева группа, то Поэтому

что противоречит выбору группы . Значит, --- -группа. Ввиду теоремы работы формация является -насыщенной, откуда вытекает, что , т.е. . Тогда и, следовательно,

Полученное противоречие показывает, что . Таким образом, .

Предположим теперь выполнимость условия и допустим, что формация не является -насыщенной. Тогда найдется такое число и такая группа с нормальной подгруппой , что , но . Поскольку

для простых и , получаем

и

для всех . Следовательно, . Полученное противоречие завершает доказательство теоремы.

Пусть --- произвольный набор -локальных спутников. Через обозначают такой -локальный спутник , что для всех .

Если для всех , то полагают, что .

Лемма. Пусть , где . Тогда , где .

Доказательство. Пусть выполнены условия леммы, т.е. , где и пусть . Тогда по условию . Следовательно, для любого . Но, так как для всех имеет место , то для всех и . Тогда всех и . Таким образом получаем, что . Лемма доказана.

Определение. Пусть такая совокупность формаций, что либо , либо , где , . Такую совокупность формаций называют цепью формаций.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы