Частично насыщенные формации с заданной структурой подформаций

Рассмотрим такие -локальные спутники , что и при всех ight=17 src="images/referats/3081/image073.png">, где . Ввиду теоремы справедливо равенство . Пусть . По лемме имеем

Из леммы вытекает, что --- внутренний -локальный спутник формации .

Понятно, что при всех . Значит, при всех имеет место равенство

Следовательно, . Но --- внутренний -локальный спутник формации . Значит, согласно теореме , получаем

откуда следует требуемое равенство. Теорема доказана.

Следствие 1. всех -насыщенных формаций модулярна.

Следствие 2. всех насыщенных формаций модулярна.

Лемма. Подрешетка модулярной решетки модулярна.

Решетка внутренних -локальных спутников формации

Пусть --- некоторая -насыщенная формация. Обозначим через --- множество всех внутренних -локальных спутников формации .

Теорема. Пусть непустая -насыщенная формация. Тогда имеют место следующие утверждения:

1) множество c операциями и образует полную решетку;

2) решетка является модулярной.

Доказательство. 1) Относительно операции множество является частично упорядоченным. Кроме этого для любых двух -локальных спутников и по лемме существуют такие -локальные спутники и , что и , т.е. для любых двух -локальных спутников из существует как наибольший, так и наименьший элементы. Следовательно, является решеткой.

Покажем, что является полной решеткой. Так как формация -насыщена, то по теореме у формации имеется такой -локальный спутник , что и для всех . Этот -локальный спутник является каноническим. По определению канонического спутника получаем, что для любого выполнено включение .

Применяя лемму , получаем, что для любой непустой совокупности внутренних -локальных спутников формации из существует наименьший элемент, равный пересечению этих -локальных спутников. При этом этот элемент является точной нижней гранью. По лемме получаем, что является полной решеткой.

2) Пусть --- внутренние -локальные спутники формации , причем , т.е. для любого .

Покажем, что выполнено Возьмем произвольное из . Тогда , и --- являются некоторыми формациями, причем все эти формации содержатся в формации . По теореме и лемме получаем, что для любого , в силу модулярности решетки всех формаций, выполнено равенство

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы