Частично насыщенные формации с заданной структурой подформаций
Рассмотрим такие -локальные спутники , что и при всех ight=17 src="images/referats/3081/image073.png">, где . Ввиду теоремы справедливо равенство . Пусть . По лемме имеем
Из леммы вытекает, что --- внутренний -локальный спутник формации .
Понятно, что при всех . Значит, при всех имеет место равенство
Следовательно, . Но --- внутренний -локальный спутник формации . Значит, согласно теореме , получаем
откуда следует требуемое равенство. Теорема доказана.
Следствие 1. всех -насыщенных формаций модулярна.
Следствие 2. всех насыщенных формаций модулярна.
Лемма. Подрешетка модулярной решетки модулярна.
Решетка внутренних -локальных спутников формации
Пусть --- некоторая -насыщенная формация. Обозначим через --- множество всех внутренних -локальных спутников формации .
Теорема. Пусть непустая -насыщенная формация. Тогда имеют место следующие утверждения:
1) множество c операциями и образует полную решетку;
2) решетка является модулярной.
Доказательство. 1) Относительно операции множество является частично упорядоченным. Кроме этого для любых двух -локальных спутников и по лемме существуют такие -локальные спутники и , что и , т.е. для любых двух -локальных спутников из существует как наибольший, так и наименьший элементы. Следовательно, является решеткой.
Покажем, что является полной решеткой. Так как формация -насыщена, то по теореме у формации имеется такой -локальный спутник , что и для всех . Этот -локальный спутник является каноническим. По определению канонического спутника получаем, что для любого выполнено включение .
Применяя лемму , получаем, что для любой непустой совокупности внутренних -локальных спутников формации из существует наименьший элемент, равный пересечению этих -локальных спутников. При этом этот элемент является точной нижней гранью. По лемме получаем, что является полной решеткой.
2) Пусть --- внутренние -локальные спутники формации , причем , т.е. для любого .
Покажем, что выполнено Возьмем произвольное из . Тогда , и --- являются некоторыми формациями, причем все эти формации содержатся в формации . По теореме и лемме получаем, что для любого , в силу модулярности решетки всех формаций, выполнено равенство
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах