Частично насыщенные формации с заданной структурой подформаций

Теорема. Если и --- минимальный -локальный спутник формации , то справедливы следующие утверждения:

1) ;

2) для всех ;

3) и --- некоторый фиксированный элемент из , то , где для всех ,

и, кроме того, ;

4) , где и для всех

Из теоремы и леммы непосредственно вытекает

Следствие. Пусть и --- минимальные -локальные спутники формаций и соответственно. Тогда в том и только в том случае, когда .

Определение. Пусть --- -насыщенная формация. -Локальный спутник формации называется каноническим, если и для всех .

Замечание 1. Согласно теореме всякая -локальная формация имеет -локальный спутник , который является каноническим. Такие спутники обозначают большими латинскими буквами.

Ясно, что если и --- произвольный внутренний -локальный спутник формации , то ввиду леммы .

Если формация , то для всех .

Из следствия теоремы следует

Лемма. Пусть и . Тогда в том и только в том случае, когда .

Определение. Через , обозначают такие -локальные спутники и соответственно, что и для любого .

Лемма. Пусть --- минимальный -локальный спутник формации , где . Тогда --- минимальный -локальный спутник формации

Доказательство. Пусть .

И пусть , а --- минимальный -локальный спутник формации . Тогда, если , то для любого имеет место . Значит, . Понятно также, что .

Пусть . Тогда найдется такое , что . Значит, согласно теореме , имеет место

Лемма доказана.

Решетка -насыщенных формаций

Результаты и методы общей теории решеток широко используются в различных областях современной математики. Наиболее широк диапазон применения этой теории в общей алгебре. Применение решеточных подходов в теории классов групп было впервые осуществлено в рамках теории многообразий групп. Позднее А.Н. Скибой было показано , что привлечение решеточных конструкций весьма полезно и при изучении формаций групп. Следует отметить, что существенную роль играет тот факт, что решетки всех формаций и всех насыщенных формаций модулярны . Эти результаты позволили широко использовать элементы общей теории решеток в вопросах изучения и классификации формаций групп. Широкий спектр применений решеточных конструкций при исследовании формаций представлен в монографии А.Н.Скибы , где, в частности, показано, что привлечение общей теории решеток при исследовании классов групп позволяет не только с успехом решать открытые вопросы, но и значительно упрощать доказательства многих уже известных теорем. Таким образом, дальнейшее развитие решеточных методов в теории классов алгебраических систем является актуальной задачей.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы