Частично насыщенные формации с заданной структурой подформаций
Теорема. Если и --- минимальный -локальный спутник формации , то справедливы следующие утверждения:
1) ;
2) для всех ;
3) и --- некоторый фиксированный элемент из , то , где для всех ,
и, кроме того, ;
4) , где и для всех
Из теоремы и леммы непосредственно вытекает
Следствие. Пусть и --- минимальные -локальные спутники формаций и соответственно. Тогда в том и только в том случае, когда .
Определение. Пусть --- -насыщенная формация. -Локальный спутник формации называется каноническим, если и для всех .
Замечание 1. Согласно теореме всякая -локальная формация имеет -локальный спутник , который является каноническим. Такие спутники обозначают большими латинскими буквами.
Ясно, что если и --- произвольный внутренний -локальный спутник формации , то ввиду леммы .
Если формация , то для всех .
Из следствия теоремы следует
Лемма. Пусть и . Тогда в том и только в том случае, когда .
Определение. Через , обозначают такие -локальные спутники и соответственно, что и для любого .
Лемма. Пусть --- минимальный -локальный спутник формации , где . Тогда --- минимальный -локальный спутник формации
Доказательство. Пусть .
И пусть , а --- минимальный -локальный спутник формации . Тогда, если , то для любого имеет место . Значит, . Понятно также, что .
Пусть . Тогда найдется такое , что . Значит, согласно теореме , имеет место
Лемма доказана.
Решетка -насыщенных формаций
Результаты и методы общей теории решеток широко используются в различных областях современной математики. Наиболее широк диапазон применения этой теории в общей алгебре. Применение решеточных подходов в теории классов групп было впервые осуществлено в рамках теории многообразий групп. Позднее А.Н. Скибой было показано , что привлечение решеточных конструкций весьма полезно и при изучении формаций групп. Следует отметить, что существенную роль играет тот факт, что решетки всех формаций и всех насыщенных формаций модулярны . Эти результаты позволили широко использовать элементы общей теории решеток в вопросах изучения и классификации формаций групп. Широкий спектр применений решеточных конструкций при исследовании формаций представлен в монографии А.Н.Скибы , где, в частности, показано, что привлечение общей теории решеток при исследовании классов групп позволяет не только с успехом решать открытые вопросы, но и значительно упрощать доказательства многих уже известных теорем. Таким образом, дальнейшее развитие решеточных методов в теории классов алгебраических систем является актуальной задачей.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах