Частично насыщенные формации с заданной структурой подформаций
Настоящая дипломная работа посвящена изучению свойств частично насыщенных формаций с заданной структурой подформаций. Работа состоит из перечня условных обозначений, реферата, введения, основной части, включающей три раздела, заключения и списка цитируемой литературы. Каждый раздел условно можно разделить на две части. Первая часть носит вспомогательный характер. В ней приводятся обозначения, о
пределения понятий, которые неоднократно используются в дальнейшем. В этой части также включены некоторые результаты теории формаций конечных групп для удобства ссылок и независимости текста работы от других источников. Во второй части работы находятся новые результаты, полученные автором в результате изучения данной темы.
Первый раздел посвящен изложению основных свойств решетки -насыщенных формаций. Здесь собраны из различных источников и систематизированы основные результаты о частично насыщенных формациях и их -локальных спутниках. Доказано, что совокупность всех внутренних -локальных спутников формации образует полную модулярную решетку.
Во втором раздле дипломной работы исследуется -дефект -насыщенной формации. Изучаются вопросы, связанные с понятием минимальных -насыщенных не -нильпотентных подформаций. Основным результатом этого раздела является теорема , дающая описание -насыщенных формаций -нильпотентного дефекта .
В третьем разделе рассматриваются -насыщенные формации, у которых решетка -насыщенных формаций, заключенных между и , является решеткой с дополнениями. В теореме получено описание -насыщенных формаций такого вида.
Работа носит теоретический характер. Результаты ее могут быть использованы в учебном процессе при чтении спецкурсов на математических специальностях в высших учебных заведениях.
РЕШЕТКА ВСЕХ -НАСЫЩЕННЫХ ФОРМАЦИЙ И ЕЕ ОСНОВНЫЕ СВОЙСТВА
Спутники формаций
В работе рассматриваются только конечные группы. Используются определения и обозначения, принятые в книгах -- и работе .
Напомним, что через обозначают множество всех простых чисел. Пусть --- некоторое непустое множество простых чисел. --- дополнение к во множестве простых чисел, т.е. . Через обозначают множество всех различных простых делителей натурального числа , а через --- множество всех простых делителей порядка группы , т.е. . Полагают также, что . Натуральное число называется -числом, если . Группа называется -группой, если ее порядок есть -число.
Определение. Формация --- это класс групп, замкнутый относительно гомоморфных образов и конечных подпрямых произведений, т.е. --- формация, если
1) и следует, что ;
2) и следует, что .
Напомним, что если --- произвольный непустой класс групп, то через обозначают пересечение всех формаций, содержащих .
Определение. Пусть --- непустое множество простых чисел. Всякую функцию вида
называют -локальным спутником. При этом запись означает множество .
Для произвольного класса групп символом обозначают пересечение всех таких нормальных подгрупп , что , а символом обозначают произведение всех нормальных -подгрупп группы .
Пусть --- класс всех тех групп, у которых каждый композиционный фактор является -группой.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах