Частично насыщенные формации с заданной структурой подформаций

Но тогда

Таким образом, является модулярной решеткой. Теорема доказана.

-НАСЫЩЕННЫЕ ФОРМАЦИИ С ОГРА

НИЧЕННЫМ -ДЕФЕКТОМ

Пусть и --- некоторые -насыщенные формации, причем формация хорошо изучена. Тогда у нас имеется некоторая информация и относительно формации , поскольку в ней содержится часть формации , а именно . Так, например, при изучении насыщенной формации часто используют ее подформацию , где --- некоторая формация классического типа. Напомним, что формация называется формацией классического типа, если она имеет такой локальный спутник, все неабелевы значения которого насыщены. Однако, в общем случае без дополнительных ограничений на "хорошо известную часть" формации что-либо сказать о самой формации трудно. В качестве одного из возможных ограничений на можно, например, рассматривать ограничения, накладываемые на решетку -насыщенных формаций , заключенных между и (-насыщенная формация принадлежит тогда и только тогда, когда ). Очевидно, что --- это наименьший, а --- наибольший элементы -насыщенной решетки

Понятие -дефекта

Определение. Для любых двух -насыщенных формаций и , где , через обозначают длину решетки -насыщенных формаций, заключенных между и .

Определение. Пусть и --- произвольные -насыщенные формации. Тогда, если решетка имеет конечную длину , то говорят, что -дефект формации конечен и равен . Если же длина этой решетки бесконечна, то говорят, что -дефект формации --- бесконечен и пишут .

Определение. Пусть и -насыщенные формации. Формация называется максимальной -насыщенной подформацией формации , если , и в не существует такой -насыщенной подформации , что .

Пример. Пусть -насыщенная формация не имеет максимальных -насыщенной подформаций. Тогда для любой -насыщенная подформации , не содержащей , -дефект формации бесконечен.

Лемма. Пусть и --- -насыщенная формации и . Тогда .

Доказательство. Поскольку в силу модулярности решетки -насыщенных формаций имеет место решеточный изоморфизм

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы