Частично насыщенные формации с заданной структурой подформаций

где . Тогда если --- произвольная -насыщенная неразрешимая подформация из c максимальной подформацией , то .

Доказательство. По лемме каждая формация имеет вид

где --- минимальная -насыщенная неразрешимая формация. Следовательно, формация имеет вид

Ввиду леммы формация имеет вид , где --- минимальная -насыщенная неразрешимая формация. Следовательно, по лемме имеет место

т.е. для некоторого . Значит

Лемма доказана.

Лемма. В однопорожденной -насыщенной формации содержится лишь конечное число разрешимых -насыщенных подформаций.

Лемма. В каждой однопорожденной -насыщенной неразрешимой формации содержится лишь конечное множество -насыщенных подформаций с разрешимым дефектом .

Доказательство. Пусть для некоторой группы . Ввиду леммы каждая минимальная -насыщенная неразрешимая подформация из имеет вид , где --- такая монолитическая группа с неабелевой минимальной нормальной подгруппой , что группа разрешима. Тогда

Поскольку --- неабелевая минимальная нормальная подгруппа группы , то . В силу леммы , --- гомоморфный образ группы . Но --- конечная группа. Значит, в имеется лишь конечное множество минимальных -насыщенных неразрешимых подформаций. В силу леммы , формация содержит лишь конечное множество разрешимых -насыщенных подформаций.

Пусть теперь произвольная неразрешимая -насыщенная подформация формации , имеющая разрешимую максимальную -насыщенную подформацию. По лемме имеем

где --- некоторая разрешимая -насыщенная формация, а --- минимальная -насыщенная неразрешимая формация. Из доказанного выше следует, что в имеется лишь конечное множество -насыщенных формаций с разрешимым дефектом . Лемма доказана.

Лемма. Пусть --- однопорожденная -насыщенная формация и --- решетка с дополнениями. Тогда каждый элемент решетки представим в виде

где --- набор всех минимальных -насыщенных неразрешимых формаций, содержащихся в .

Доказательство. Ввиду теоремы и леммы решетка -насыщенных подформаций формации модулярна. Следовательно, модулярной является и ее подрешетка . В силу леммы --- модулярная решетка с относительными дополнениями. Ввиду лемм и решетка имеет конечное число атомов. Значит, по лемме имеет конечную длину. Но тогда, по лемме и лемме , каждый элемент решетки представим в виде

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы