Разработка стенда для вывешивания и сдвига рельсошпальной решетки

Роликовые захваты используются в основном на машинах циклического действия. Они приводятся в действие при остановке машины во время рабочего цикла. В настоящее время делается попытка использования этих захватов на машинах непрерывного действия. Однако разработанные конструкции имеют ряд недостатков. В частности, не отработана конструкция, надежно удерживающая решетку в вывешенном состоянии при

проходе рельсовых стыков. Не предусмотрены устройства для регулировки зазоров между роликами и рельсами в случае использования машин на путях с различным типом рельсов или при износе роликов. Как и в электромагнитных захватах, наиболее нагруженными являются ролики со стороны меньшего свободного пролета. В конструкции захвата должны быть предусмотрены устройства, выравнивающие нагрузки по его длине на захватных и рихтующих роликах. Нагрузки на один захватный ролик находятся в пределах 25 .30 кН, на рихтующий ролик - 10 .15 кН [10].

Надежность работы роликов зависит от их конструкции и взаимного расположения. Для свободного прохода захватами кривых участков пути и наибольшего вывешивания решетки с меньшим усилием необходимо захватывать рельс на небольшой длине. Однако сближение роликов может привести к тому, что оба комплекта захватных роликов будут находиться на рельсовой накладке. Надежность захвата и удержания решетки при этом резко снижается.

Конструкции захватов должны обеспечивать возможность прохода машиной кривых участков пути и участков с изменением ширины колеи, без заклинивания роликов. Особенно это важно в устройствах с электромеханическим приводом [4].

Следует отметить, что усовершенствование захватов делается с учетом типа машины и условий производства работ. Так, многосекционные захваты целесообразно применять на машинах с большими свободными пролетами (балластировочные и щебнеочистительные машины). На машинах с малой базой захваты должны быть небольшой длины и иметь дублирующие элементы.

2 РАЗРАБОТКА СТЕНДА

2.1 Геометрическая компоновка рабочего оборудования на раме

Основу стенда составляет удлиненная рама грузовой платформы (рисунок 9), состоящая из двух боковых балок и двух хребтовых изготовленных из двутавра № 60 с переменным по высоте сечением.

Рисунок 9 – Грузовая платформа

Длина рамы стандартной платформы была увеличена на 10250 мм и составляет 23650 мм, для того чтобы обеспечить базу стенда Lм=19950 мм.

ПРУ взято с выправочно-подбивочной машины ВПР-02 и смонтировано с опорой на раму стенда Кинематическая схема ПРУ представлена на рисунке 5.

Как уже говорилось в аналитическом обзоре, расположение подъемно-рихтовочного устройства в пролете путевых машин зависит от типа машины и ее назначения. У щебнеочистительных и балластировочных машин ПРУ расположено в середине пролета, а у выправочно-подбивочных машин ПРУ находится ближе к задней тележке. Схема компоновки подъемно-рихтовочного устройства на раме стенда изображена на рисунке 10.

Рисунок 10 – Общая схема компоновки лабораторного стенда

Проектируемый мной в дипломном проекте лабораторный стенд будет иметь переднюю стационарную тележку и заднюю перемещаемою вдоль рамы стенда.

Задняя тележка фиксируется в одном из трех возможных положений, для этого на раме стенда дополнительно находятся еще две шкворневых балки. При максимальной базе платформы Lм = 19950 мм, ось ПРУ находится в середине пролета как у щебнеочистительных и балластировочных машин. При минимальной базе платформы Lм =14570 мм, ось ПРУ расположена на расстоянии 4595 мм, что равнозначно расположению ПРУ у машины ВПР-02.

2.2 Расчет усилий вывешивания и сдвига бесстыкового пути

2.2.1 Расчет усилий вывешивания

2.2.1.1 Расчетный случай №1

Исходные данные: длина защемленного рельса в пролете стенда L: 18,1м; расстояние от оси ПРУ до ближайшей точки защемления рельса колесной парой передней тележки ар : 9,05 м; расстояние от оси ПРУ до ближайшей точки защемления рельса колесной парой задней тележки bp: 9,05 м; величины вывешивания путевой решетки Hвыв , м: 0,01; 0,05; 0,1; 0,15; 0,2; 0,25.

Расчетная схема изображена на рисунке 11.

Рисунок 11 – Расчетная схема №1 к определению усилия вывешивания РШР

Суммарное усилие вывешивания Рсум , Н [10]:

, (1)

где Р - основное усилие вывешивания путевой решетки Р, Н [10]; Рдоп - дополнительное усилие вывешивания путевой решетки Рдоп , Н [10].

, (2)

где q - погонное сопротивление подъему путевой решетки q, Н/м [10]; Е – модуль упругости рельсовой стали, Н/м2 [10]; Ix – момент инерции поперечных сечений двух рельсов относительно главных горизонтальных осей, Iх = м4 [10].

, (3)

где qпр – погонный вес путевой решетки, qпр = 6500 Н/м [10]; qб – погонное сопротивление балласта подъему, qб = 9500 Н/м [10]; к – коэффициент, зависящий от типа верхнего строения пути, к = 196 Н/м [10].

Н/м.

Н.

, (4)

где кд – поправочный коэффициент, кд = 1,2 [10]; дополнительные изгибающие моменты Мда и Мдб , [10].

, (5)

, (6)

где Рпр - продольное усилие растяжения двух рельсовых нитей, Н [10]; - угол поворота рельсов, рад [10].

, (7)

.

, (8)

где М1 - реактивный изгибающий момент , [10]; R1 - реактивное усилие, Н [10].

, (9)

, (10)

.

.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы