Методика обучения элементам теории вероятностей на факультативных занятиях в общеобразовательной школе
Заметим еще одно существенно важное обстоятельство. В опыте с броском игральной кости события Q1 , Q2, ., Q6 как бы играют особую роль для этого опыта. Сущность этой особой роли состоит в том, что в результате опыта одно из этих событий обязательно происходит, а любые два из них несовместны.
Определение. Множество событий рассматриваемого опыта, одно из которых в результате опыта обязательн
о происходит, а любые два из них несовместны, называется множеством элементарных событий (или исходов) этого опыта, а каждое событие из этого множества называется элементарным событием рассматриваемого опыта или его исходом.
Так, в опыте с броском игральной кости события Q1 , Q2, ., Q6образуют множество исходов этого опыта. Подчеркнем, что для одного и того же опыта можно рассматривать разные множества исходов.
Например, для опыта с броском игральной кости можно рассматривать множество из двух исходов — Qч и Qн. В самом деле, эти события несовместны, ив результате опыта (броска игральной кости) одно из них обязательно происходит. От того, как выбрано множество элементарных событий опыта, зависит большая или меньшая сложность решения поставленной вероятностной задачи: при удачном выборе решение сильно упрощается, а при неудачном или усложняется, или вообще не может быть найдено.
Итак, мы познакомились со случайными событиями и простейшим» видами связей между ними.
Первичное закрепление и осмысление материала. Решение задач.
Учитель: Разобранная нами схема а проведения опыта - частный случай, привычные вам задачи, в которых результат действий определен однозначно; однако в задачах по теории вероятностей возможны различные ответы на поставленные вопросы, где учитываются не только статистические закономерности, но и индивидуальные особенности разных людей, предметов.
Задание 1. Сравните между собой на основе жизненного опыта общения по телефону шансы следующих случайных событий определите, какие из них наиболее вероятны.
A: вам никто не позвонит с 5 до 6 утра.
B: вам кто – нибудь позвонит с 5 до 6 утра.
C: вам кто – нибудь позвонит с 6 до 9 вечера.
D: вам никто не позвонит с 6 до 9 вечера.
Решение. Поскольку ранним утром звонки вообще бывают очень редко, у события B шансов крайне мало, оно маловероятное, почти невозможное. Но вот у события А очень много шансов, это практически достоверное событие.
Вечерние часы, наоборот, время самого активного телефонного общения, поэтому событие С для большинства людей вероятней, чем событие D. Хотя если человеку вообще звонят редко, событие D может оказаться вероятнее события С.
Задание 2. В игре "Любовь с первого взгляда" трое юношей и три девушки случайно выбирают друг друга. Если выбор какого – нибудь юноши и девушки совпал, то образуется пара. Какие из следующих событий невозможные, случайные, достоверные: A: не образовалось ни одной пары.
B: образовалась одна пара.
C: образовалось две пары.
D: образовалось три пары.
Ответ.Все события случайные.
Задание 3. Три господина, придя в ресторан, сдали в гардероб свои шляпы. Расходились по домам они уже в темноте и разобрали свои шляпы наугад. Какие из следующих событий невозможные, случайные, достоверные: A: каждый надел свою шляпу.
B: все надели чужие шляпы.
C: двое надели чужие шляпы, а один - свою.
D: двое надели свои шляпы, а один – чужую.
Ответ. События A, В , С – случайные, событие D – невозможное.
5. Итоги урока. Вопросы для повторения:
Какое событие называется случайным?
Какие события называются достоверными, несовместными?
Приведите примеры?
6. Постановка домашнего задания.
Задание.
Ученика поручается подбрасывать кубик несколько раз. Cтавятся следующие вопросы. Какие из следующих событий являются возможными (случайными), а какие достоверными:
1) кубик, упав, останется на ребре;
2) выпадет только одно из чисел: 1, 2, 3, 4, 5, 6 ;
выпадет число 6;
выпадет число 4;
выпадет четное число;
выпадет нечетное число;
выпадет число, которое делится на 5;
выпадет число, которое делится на 7;
выпадет число, которое делится на 3;
10) не выпадет никакое число.
Классическое определение вероятности. Уроки-практикумы
Основная цель этих уроков – усиление практической направленности обучения. Они должны быть тесно связанными с изученным материалом и способствовать прочному его усвоению. Основными формами их проведения являются практические и лабораторные занятия, на которых учащиеся самостоятельно упражняются в практическом применении усвоенных теоретических знаний и умений. На лабораторных работах формируются экспериментальные умения, а на практических - конструктивные. На этих уроках закрепляется и углубляется теоретический материал, изложенный в лекции, проводится целенаправленная работа по выработке у учащихся умений и навыков решения основных типов задач. В первую очередь обращается внимание на отработку навыков решения задач из учебника (простейших).
С учащимися обсуждаются подходы к решению опорных (ключевых) задач, их оформление. Образцы выполнения этих задач учащиеся записывают в свои рабочие тетради. К этим урокам подбираются упражнения, составленные по принципу внутрипредметных и межпредметных связей.
Они позволяют параллельно с изучением нового повторить общие подходы к решению задач из ранее изученного материала. Здесь успешно применяются групповые формы работы, используется помощь консультантов из числа успевающих учащихся этого класса. Учащимся, проявляющих повышенный интерес к математике, оказывается достаточно времени для более глубокого изучения вопросов теории. Для них подбираются специальные задания повышенной трудности. Таким образом на практических занятиях проводится дифференцированная работа с учащимися с учетом интересов как сильных учеников, так и более слабых из них.
На этих уроках могут быть использованы различные средства обучения: дидактический материал, таблицы, ТСО, что помогает тому, чтобы время урока расходовалось экономно, с максимальной отдачей учащихся.
Внешне эти уроки не всегда вписываются в традиционные схемы, могут со стороны казаться неинтересными, но они приносят большую пользу учащимся. Здесь идет кропотливая работа по усвоению знаний, овладению умений, ученики получают ответы на невыясненные вопросы, приобретают необходимые общеучебные навыки, усваивают алгоритмы решения задач, готовятся к зачету или контрольной работе.
Полезно планировать проведение на практических занятиях промежуточный контроль, который позволяет своевременно обнаружить пробелы в знаниях и принять меры по их ликвидации.
Очень важным при обучении математики является практикум по решению задач. Эти занятия можно построить таким образом: решение задач по изучаемой теме проводится в два этапа.
Первоначальный этап – это обучение поиску решения задач на основе подробного разбора опорных. Особое внимание при этом уделяется (чертежу)схеме, в процессе создание которой учащиеся осваивают особенности и связи объектов в условии. Так с подробным анализом и обоснованием каждого шага решаются 8-10 задач. Первый этап решения задач можно закончить зачетом.
Другие рефераты на тему «Педагогика»:
- Проектный метод как новый метод изучения английского языка
- Влияние коллектива на формирование личности младшего школьника
- Творческое развитие личности школьника в условиях учреждений дополнительного образования
- Методы исследования в методике преподавания русского языка
- Сенсорное воспитание в истории педагогики
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения