Методика обучения элементам теории вероятностей на факультативных занятиях в общеобразовательной школе
Приведите пример опыта и четырех его событий, таких, чтобы эти четыре события не составляли множество исходов опыта, но одно из них в результате опыта происходит обязательно.
Приведите пример опыта с тремя исходами.
Практическая работа
Тема урока: Классическое определение вероятности.
Цель урока:
закрепить знание формулы;
способствовать развитию навыка самостоятельного п
рименения знаний при решении задач, внимания;
воспитать усидчивость, терпение.
Оборудование: доска, мел, набор задач.
Структура урока.
Организационный момент.
Сообщение темы и цели занятия.
Изучение нового материала.
Учитель.Изучение понятия вероятности события обычно начинается с самого простого частного случая, — так называемого классического определения. Оно опирается на понятие равновероятности событий.
Начнем с примеров. В опыте с броском монеты события Г=«выпал герб» и Ц = «выпала цифра» очевидно равновероятны. Это утверждение основано на том, что монета симметрична и однородна. В опыте с броском игральной кости события Q1, Q2, ., Q6 тоже, очевидно, равновероятны. Это следует из однородности материала кости и ее симметричной формы. Таким образом, равновероятность событий обычно устанавливается исходя из того, что условия опыта симметричны относительно рассматриваемых событий. При этом симметрия понимается в широком смысле этого слова и геометрическая симметрия, и физическая симметрия (например, однородность материала, из которого изготовлена игральная кость или монета) и так далее. То есть для того чтобы можно было начать, решение задачи средствами теории вероятностей, необходимо, чтобы вероятности некоторых событий в задаче уже были указаны. Откуда же эти вероятности берутся?" Их дают те конкретные науки, в рамках которых возникла решаемая вероятностная задача. При этом зачастую основную роль играют соображения не математические, а той науки, в рамках которой возникла задача. Понятие равновероятности событий — это есть одна из форм указания начальных вероятностей.
Теперь можно дать классическое определение вероятности случайного события.
Определение.Пусть множество исходов опыта состоит из n равновероятных исходов. Если m из них благоприятствуют событию А, то вероятностью события А называется число p(A)=
Решение задач.
Задание 1. Какова вероятность того, что при броске игральной кости выпадет четное число очков?
Решение. В опыте «бросок игральной кости» мы имеем 6 равновероятных исходов: события Q1 , Q2, ., Q6. Нас интересует вероятность события Qч. Этому событию благоприятствуют три исхода опыта: события Q2, Q4 и Q6. Следовательно n = 6, т = 3, а искомая вероятность
Задание 2. Бросали две монета. Какова вероятность того, что на каждой монете выпал герб?
Решение. Сразу напрашивается множество исходов, состоящее из трех событий (здесь опыт — фосок двух монет): «на обеих монетах выпал герб» = Г, «на обеих монетах выпала цифра» = Ц и «на одной монете выпал герб, а на другой монете выпала цифра» = А. Но интуитивно ясно, что это не равновероятные события — событие А имеет больше шансов появиться. Чтобы получать равновероятные исходы, внесем в этот опыт некоторое дополнение, которое не изменит вероятностной структуры задачи. Именно, возьмем одну монету медную, а другую серебряную. Это добавление позволит выделить равновероятные исходы испытания. Ими будут события Г, Ц, А1= «на серебряной монете выпал герб, на медной монете выпала цифра» и А2 = «на серебряной монете выпала цифра, на медной монете выпал герб». Эти четыре события уже равновероятны, поскольку условия опыта относительно них симметричны. Они также образуют множество исходов рассматриваемого опыта. Теперь все подготовлено для того, чтобы можно было обратиться к теории вероятностен {до сих пор мы пользовались условиями задачи для выяснения некоторых основных, исходных вероятностей: в нашем случае это сводилось к выявлению равновероятных исходов испытания). Равновероятных исходов испытания 4, т. е. п= 4. Нас интересует вероятность события Г. Ему благоприятствует только один исход, т. е. т =1. Следовательно, искомая вероятность
Задание 3. Из семи одинаковых билетов один выигрышный. Семь человек по очереди и наугад берут (и не возвращают обратно) по одному билету. Зависит ли вероятность взять выигрышный билет от номера в очереди?
Решение. Опишем математическую модель этого примера. Перенумеруем все билеты, начиная с выигрышного. В результате опыта билеты оказываются распределенными между людьми, которые занимали определенные места в очереди. Этим упорядочивается множество из семи билетов: на первом месте оказывается билет, взятый человеком, стоявшим в очереди первым; на втором месте оказывается билет, взятый человеком, стоявшим в очереди вторым, и т. д. Таким образом, исходом опыта является получение некоторой перестановки из 7 билетов, их число n=7!. Поскольку билеты берутся наугад, то все эти. исходы равновероятны. Нас интересует вероятность события А= «человек, стоявший в очереди на k-м месте, взял выигрышный билет». Этому событию благоприятствуют исходы, при которых получаются перестановки, имеющие на k-м месте выигрышный билет, а остальные 6 мест заняты произвольной перестановкой из оставшихся шести невыигрышных билетов, их число т= 6! Следовательно,
Видим, что вероятность взять выигрышный билет не зависит от номера очереди.
Задание 4.На пяти одинаковых на ощупь карточках написаны буквы: на двух карточках—буква Л и на трех карточках— буква И. .Выкладываем наугад эти карточки подряд. Какова вероятность того, что выложится слово ЛИЛИИ?
Решение. Опыт в этой задаче состоит в получении наугад некоторого «слова» из имеющихся пяти букв. Нас интересует вероятность события С = «получено слово ЛИЛИИ». Для выявления равновероятных исходов перенумеруем буквы так: Л1, Л2, И1, И2, И3. Теперь в результате опыта мы будем получать слово из нумерованных букв. События «получено слово Л1И1Л2И2И3»и «получено слово Л2И1Л1И3И2» разные, хотя и в том и в другом случае получено слово ЛИЛИИ, т. е. произошло интересующее нас событие С. Выписанные события благоприятствуют событию С. Ясно, что события, выписанные выше, и все возможные аналогичные есть равновероятные исходы нашего опыта. Число их равно числу перестановок в множестве из пяти элементов, т. е. п= 5!=120. Подсчитаем при помощи принципа произведения число исходов, благоприятствующих событию С.
Рассмотрим множество В= {(Л1Л2); (Л2Л1)}, состоящее из двух возможных перестановок нумерованных букв Л, и множество А, состоящее из шести перестановок нумерованных букв И1И2И3. Каждый исход, благоприятствующий событию С, можно получить так: берем элемент множества В и ставим буквы Л (сохраняя их порядок) на первое и третье места в слове. Оставшиеся места занимаем каким-нибудь элементом множества А (не изменяя порядка нумерованных букв И). Таким образом, каждый исход получается как пара: элемент из В и элемент из А. В силу принципа произведения число таких исходов т = 2 • 6 =12. Вероятность же интересующего нас события
Другие рефераты на тему «Педагогика»:
- Педагогический процесс как неотъемлемая часть подготовки социолога
- Основные тенденции современного общего и профессионального образования в России
- Интегрированные уроки в процессе обучения младших школьников
- Экологическое воспитание дошкольников
- Особенности вероятностного прогнозирования у детей младшего школьного возраста с тяжёлыми нарушениями речи
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения