Методика обучения элементам теории вероятностей на факультативных занятиях в общеобразовательной школе
Полноценное существование гражданина в сложном, вариативном и многоукладном обществе непосредственно связано с правом на получение информации, с ее доступностью и достоверностью, с правом на осознанный выбор, который невозможно осуществить без умения делать выборы и прогнозы на основе анализа и обработки зачастую неполной и противоречивой информации.
Мы должны научить детей жить в вероятнос
тной ситуации. А это значит извлекать, анализировать и обрабатывать информацию, принимать обоснованные решения в разнообразных ситуациях со случайными исходами. Ориентация на демократические принципы мышления, на многовариантность возможного развития реальных ситуаций и событий, на формирование личности, способность жить и работать в сложном, постоянно меняющемся мире, с неизбежностью требует развития вероятностно – статистического мышления у подрастающего поколения. Эта задача может быть решена в школьном курсе математики на базе комплекса вопросов, связанных с описательной статистикой и элементами математической статистики, с формированием комбинаторного и вероятностного мышления [12]. Однако не только социально – экономическая ситуация диктует необходимость формирования у нового поколения вероятностного мышления. Вероятностные законы универсальны. Они стали основой описания научной картины мира. Современная физика, химия, биология, демография, социология, лингвистика, философия, весь комплекс социально – экономических наук построены и развиваются на вероятностно – статистической базе. Подросток не отделен от этого мира глухой стеной, да и в своей жизни он постоянно сталкивается с вероятностными ситуациями. Игра и азарт составляют существенную часть жизни ребенка. Круг вопросов, связанных с соотношениями понятий "вероятность" и "достоверность", проблема выбора наилучшего из нескольких вариантов решения, оценка степени риска и шансов на успех, представление о справедливости и несправедливости в играх и в реальных жизненных коллизиях – все это, несомненно, находится в сфере реальных интересов подростка. Подготовку к решению таких проблем и должен взять на себя курс школьной математики.
Сегодня в науке фундаментальное значение приобрело понятие случайного и уверенно пробивает себе дорогу отыскания оптимальных решений. Особенно назрела необходимость введения в школьное преподавание концепции случайного, и это вызывается не только требованиями научного и практического порядка, но и чисто методическими соображениями. В то же время классическая система российского образования основана, прежде всего, на отчетливо детерминистских принципах и подходах и в математике, и в других предметах. Если не снять, то хотя бы ослабить противоречие между формируемой в стенах школы детерминистской картиной мира и современными научными представлениями, базирующимися на вероятностно – статистических законах, невозможно без введения основ статистики и теории вероятностей в обязательное школьное образование. Современная концепция школьного математического образования ориентирована, прежде всего, на учет индивидуальности ребенка, его интересов и склонностей. Этим определяются критерии отбора содержания, разработка и внедрение новых, интерактивных методик преподавания, изменения в требованиях к математической подготовке ученика. Одновременно само знакомство школьников с очень своеобразной областью математики, где между черным и белым существует целый спектр цветов и оттенков, возможностей и вариантов, а между однозначным "да" и "нет" существует еще и "быть может" (причем это "быть может" поддается строгой количественной оценке!), способствует устранению укоренившегося ощущения, что происходящее на уроке математики никак не связано с окружающим миром, с повседневной жизнью.
Согласно данным ученых-физиологов и психологов, а также по многочисленным наблюдениям учителей математики падение интереса к процессу обучения в целом и к математике в частности. На уроках математики в основной школе, в пятых-девятых классах, проводимых по привычной схеме и на традиционном материале, у ученика зачастую возникает ощущение непроницаемой стены между излагаемым абстрактно-формальными объектами и окружающим миром. Именно вероятностно-статистическая линия, или, как ее стали называть в последнее время, - стохастическая линия, изучение которой невозможно без опоры на процессы, наблюдаемые в окружающем мире, на реальный жизненный опыт ребенка, способна содействовать возвращению интереса к самому предмету "математика", пропаганде его значимости и универсальности. Наконец, концепция открытого общества, процессы европейской и мировой интеграции неразрывно связанны с взаимным сближением стран и народов, в том числе и в сфере образования. Россия, имея одну из самых мощных и признанных в мире традиций школьного математического образования, одновременно остается едва ли ни единственной развитой страной, где в основном школьном курсе математики нет основ статистики и теории вероятностей. Наметившиеся в нашей стране тенденции экономических преобразований позволяют предположить, что в самом недалеком будущем обществом будут востребованы организаторы и участники производства нового типа, которыми должны будут стать многие выпускники школ. Столь необходимую для их деятельности стохастическую культуру надо воспитывать с ранних лет. Не случайно в развитых странах этому уделяется большое внимание: с элементами теории вероятностей и статистики учащиеся знакомятся уже с первых школьных лет и на протяжении всего обучения усваивают вероятностно – статистические подходы к анализу распространенных ситуаций, встречающихся в повседневной жизни.
Число примеров подходов к изучению вероятностно – статистического материала в средней школе можно было бы привести много, поскольку за последние два десятилетия практически каждая страна ввела этот материал в школьную программу и предложила один или несколько подходов к его изучению. Интересные работы появились в Польше, Швеции, Израиле, Франции. Проблемы, связанные с созданием системы изучения вероятностно – статистического материала в средней школе, в нашей стране освещается недостаточно. Анализ известных нам подходов к изучению элементов теории вероятностей и статистики в средних школах различных стран позволяет сделать следующие выводы:
- в подавляющем большинстве стран этот материал начинает изучаться в начальной школе;
- на протяжении всех лет обучения учащиеся знакомятся с вероятностно – статистическими подходами к анализу эмпирических данных, причем большую роль при этом играют задачи прикладного характера, анализ реальных ситуаций;
- в процессе обучения большая роль отводится задачам, требующим от учащихся работы в маленьких группах, самостоятельного сбора данных, обобщение результатов работы групп, проведение самостоятельных исследований, работ практического характера, постановки экспериментов, проведение небольших лабораторных работ, подготовки долгосрочных курсовых заданий – все это диктуется своеобразием вероятностно – статистического материала, его тесной связью с практической деятельностью;
Другие рефераты на тему «Педагогика»:
- Личностная идентичность учителя и особенность его общения
- Психолого-педагогические условия для развития творческих способностей младших подростков на уроках иностранного языка
- Педагогическая адаптация у студентов с нарушениями слуха
- Развитие мотивации к изучению иностранного языка на средней ступени обучения в школе
- Преподавание технологии обработки металлов
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения