Методика обучения школьников применению теории к решению задач на вычисление и доказательство по теме "Многоугольники"
В учебнике "Геометрия 7-9" Л.С. Атанасяна, сначала изучаются теоремы п.25 §1 "Признаки параллельности двух прямых" главы III. т.е.:
Теорема: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Теорема: Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
Теорема: Если при пересечении д
вух прямых секущей сумма односторонних углов равна 180, то прямые параллельны.
Затем в §2 этой главы "Аксиома параллельных прямых" в п.29 вводят определение:
теоремой, обратной данной, называется такая теорема, в которой условием является заключение данной теоремы, а заключением - условие данной теоремы.
После чего школьникам предлагают доказать теоремы, обратные теоремам п.25.
Рассмотрим методику введения понятия "обратная теорема" на примере учебника А.В. Погорелова.
1способ: Вначале учащиеся доказывают Т.3.3: "В равнобедренном треугольнике углы при основании равны", затем Т.3.4: "Если в треугольнике два угла равны, то он равнобедренный".
После чего учащиеся говорят "Теорема 3.4 называется обратной теореме 3.3 Заключение теоремы 3.3 является условием теоремы 3.4 А условие теоремы 3.3 является заключением теоремы 3.4
Не всякая теорема имеет обратную, т.е. если данная теорема верна, то обратная теорема может быть неверна. Поясним это на примере теоремы о вертикальных углах.
Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно.
Два равных угла вовсе не обязательно быть вертикальными".
В то же время в методической литературе перечисляют затруднения, которые испытывают учащиеся.
школьнику кажется, что прямая и обратная теоремы выражают одну и ту же мысль;
если ученик различает содержание каждой теоремы, то убежден, что справедливость одной влечет за собой справедливость другой;
3) не вполне ясное выделение в теореме условия и заключения приводит к тому, что ученики часто смешивают прямую и обратную теоремы;
4) большинству учащихся кажется, что обе записи выражают одну и ту же мысль.
Поэтому можно предложить второй способ изложения этого материала.
II способ: Перед доказательством Т.3.4 учитель предлагает учащимся самостоятельно сформулировать ту теорему, которая получается из Т.3.3, если в ней поменять условие и заключение.
Учащиеся заполняют таблицу:
Прямая теорема |
Обратная теорема | |
Условие |
Если в треугольнике две стороны равны, Если треугольник равнобедренный, |
Если в треугольнике два угла равны, Если углы при основании равны, |
Заключение |
то углы, лежащие против этих сторон равны, то углы при основании равны. |
то стороны, лежащие против этих углов, равны. то треугольник равнобедренный. |
Учитель предлагает доказать эту теорему. После доказательства возвращается к первой строчке таблицы, вводятся термины "прямая теорема", "обратная теорема".
После доказательства Т.3.4 надо предложить учащимся ряд упражнений на образование обратных теорем:
Например, составить для каждой из теорем обратную:
Если сумма цифр числа нацело делится на 9, то само число делится на 9.
Если число оканчивается двумя нулями, то оно нацело делится на 4.
Если в одном и том же круге центральные углы равны, то и соответственные им дуги равны.
Ученик, составляя обратную теорему, должен сказать верна ли она.
В упражнениях полезно ввести и жизненные примеры: образовать обратное утверждение к следующему: если ученик болен, то он пропускает уроки.
Также полезно предложить учащимся привести примеры доказанных ранее теорем сформировать для них обратные. При этом лучше переформулировать теоремы таким образом, чтобы они читались: "Если., то.". Можно взять в качестве примера теорему о вертикальных углах, I и II признаки равенства треугольников и теорему о смежных углах.
На примере теорем 3.3 и 3.4 и признаков равенства треугольников показывается, что в этих случаях наряду с исходной теоремой верна и обратная; на примере теоремы о вертикальных углах - что возможен случай, когда прямая теорема верна, а обратная утверждение неверно.
Можно также предложить ученикам сформировать теорему обратную к теореме 3.4 (или к любой другой, которую они формировали как обратную), и убедиться в том, что теорема, обратная обратной, есть прямая теорема.
Методика изучения темы "Четырехугольники"
Четырехугольники - традиционный для курса планиметрии материал. Как и треугольник, четырехугольник трактуется в одних учебниках как простая замкнутая четырехзвенная ломаная, в других - как часть плоскости, ограниченная такой ломаной. Из всевозможных четырехугольников выделяют выпуклые. Во всех действующих в настоящее время пособиях осуществляется одинаковый подход во введении частных видов параллелограммов: прямоугольников и ромбов. Квадрат в одних учебниках вводится как четырехугольник, который одновременно является прямоугольником и ромбом. В других квадрат определяется как частный вид прямоугольника. Трапеция рассматривается после параллелограммов.
При установлении различных свойств и признаков параллелограмма широко используются свойства и признаки равных треугольников, свойств углов, образованных при пересечении двух параллельных прямых третьей, признаки параллельности прямых. Материал о параллелограммах и их частных видах очень удобен для формирования и развития логического мышления учащихся. Именно здесь учитель имеет широкие возможности по работе с определениями: предложить, например, ученику дать определение прямоугольника через понятие прямоугольника, параллелограмма и т.д.
Параллелограмм
В учебнике "Геометрия 7-11" А.В. Погорелова тема "Параллелограмм" изучается в 6 параграфе "Четырехугольники" в трех пунктах.
В п.51 "Параллелограмм" в начале вводится определение параллелограмма: "Параллелограмм - это четырехугольник, у которого противолежащие стороны параллельны, т.е. лежат на параллельных прямых", а затем рассматривают и доказывают признак параллелограмма (Т.6.1).
Теорема 6.1: Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм.
В п.52 "Свойство диагоналей параллелограмма" и п.53 "Свойство противолежащих сторон и углов параллелограмма" изучаются свойства параллелограмма:
Другие рефераты на тему «Педагогика»:
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения