Методика обучения школьников применению теории к решению задач на вычисление и доказательство по теме "Многоугольники"

1. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.

2. У параллелограмма противолежащие стороны равны, противолежащие углы равны.

В учебнике "Геометрия 7-9" Л.С. Атанасяна тема "Параллелограмм" рассматривается в §2 "Параллелограмм и трапеция" в пунктах 42 и 43.

Определение и свойства параллелограмма даются в п.42 "Паралл

елограмм":

Опр.: Параллелограммом называется четырехугольник, у которого противолежащие стороны попарно параллельны. Свойства:

1. В параллелограмме противолежащие стороны и противолежащие углы равны.

2. Диагонали параллелограмма точкой пересечения делятся пополам.

Л.С. Атанасян выделяет три признака параллелограмма, которые изучаются в 43 пункте "Признаки параллелограмма":

Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм.

Если в четырехугольнике противолежащие стороны попарно равны, то этот четырехугольник - параллелограмм.

3. Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм.

Рассмотрим методику изучения темы "Параллелограмм" на примере геометрии А.В. Погорелова. Понятие параллелограмма вводится с помощью таблицы "Четырехугольники".

В таблице показаны два вида четырехугольников: параллелограммы и не параллелограммы.

Параллелограмм иллюстрируется не одним объектом, входящим в объем этого понятия, что дает возможность с первого урока учащимся не приписывать этому понятию несущественные признаки: один угол острый, а другой - тупой, стороны не равны и т.д.

Классу задается вопрос: по какому признаку разделили все четырехугольники на два вида? (У четырехугольников справа противолежащие стороны параллельны.)

Составляется определение параллелограмма: параллелограммом называется четырехугольник, у которого противолежащие стороны параллельны, т.е. лежат на параллельных прямых.

Термин "параллелограмм" происходит от объединения греческих слов "параллелос" - то, что идет рядом, и "грамма" - черта, линия (этот термин ввел Евклид).

После введения определения параллелограмма школьники решают следующие задачи:

3адача 1. При пересечении двух прямых а и b прямыми с и d образуется четырехугольник ABCD. Определите в каком случае четырехугольник является параллелограммом?

Ответ: a) a||b, с||d; б) a||b, c||d; в) а||b; г) с||d.

Задача 2. В треугольнике ABC параллельно сторонам АВ и АС проведены прямые DG и FG. Определите вид четырехугольника AFGD.

Решение.

Т.к. AF||DG. AD||FG (по условию), следовательно AFGD - параллелограмм (по определению).

Ответ: AFGD-параллелограмм.

Задача 3. В параллелограмме ABCD параллельно стороне АВ проведена прямая FG. Определите вид четырехугольника ABFG.

AB||GF, BF||AG, следовательно ABFG - параллелограмм (по определению параллелограмма).

Ответ: ABFG - параллелограмм.

Задача 4. В треугольнике ABC проведена медиана BF. На ее продолжении за точку F отложен отрезок FD, равный BF. Докажите, что четырехугольник ABCD - параллелограмм.

Дано: BF-медиана ∆АВС, FD=BF.

Доказать: ABCD-параллелограмм.

Решение. AF=CF, так как BF - медиана ∆АВС. FD=BF по условию.

Следовательно, в четырехугольнике ABCD диагонали АС и BD пересекаются и точкой пересечения F делятся пополам. Следовательно, по признаку параллелограмма четырехугольник ABCD - параллелограмм.

Ч. т.д.

Признаки параллелограмма

Для "открытия" теоремы 6.1 учащимся предлагается в тетрадях выполнить следующие построения: провести две пересекающиеся прямые, отложить на них точки пересечения соответственно равные отрезки АО=ОС, OB=OD (AO не равен ОВ) и полученные точки А, В, С, D последовательно соединить отрезками. Такой подход дает возможность учащимся лучше понять и запомнить содержание теоремы, не путать ее условие и заключение.

Классу задается вопрос: Какой же получился четырехугольник? Формулируется теорема 6.1, записывается ее условие.

Теорема: Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм.

Дано: ABCD - четырехугольник, ACUBD=0,AO=OC, BO=OD.

Доказать: ABCD-параллелограмм.

Доказательство.

ABCD - четырехугольник, точка О - точка пересечения его диагоналей.

Рассмотрим ∆AOD и ∆СОВ, они равны, т.к.

AOD= COB (вертикальные), OD=OB (по условию теоремы), ОА=ОС (по условию теоремы).

=> OBC=ODA, а они являются внутренними накрест лежащими для прямых AD и ВС и секущей BD.

=> AD||BC (по признаку параллельности прямых).

Аналогично доказывается параллельность прямых АВ и CD => ABCD - параллелограмм (по определению).

Ч. т.д.

Свойства параллелограмма

После введения определения параллелограмма и его признака, изучают свойства.

Свойство диагоналей параллелограмма учащиеся легко обнаружат, выполнив соответствующий рисунок.

Теорема 6.2 (обратная теореме 6.1): Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.

Дано: ABCD-параллелограмм,

АС и BD-диагонали.

Доказать: AC⋂BD и точкой пересечения делятся пополам.

Доказательство.

Пусть ABCD - данный параллелограмм.

BD - диагональ, точка О ее середина. Предположим, что существует точка d, такая что АО=ОС1.

Получаем, что ABС1D - параллелограмм (по Т.6.1).

=>BC||AD. Получили противоречие, т.к. через точку можно провести только одну прямую, параллельную данной. Значит ВС1 совпадает с ВС.

Точно так же доказывается, что прямая DC1 совпадает с прямой DC.

Значит, что C1 совпадает с точкой С => ABCD совпадает с ABC1D. Поэтому его диагонали пересекаются и точкой пересечения делятся пополам.

Ч. т.д.

Теорема 6.3: У параллелограмма противолежащие стороны равны, противолежащие углы равны.

Дано: ABCD-параллелограмм, АС и BD-диагонали, AC⋂BD=0

Доказать: AB=CD, AD=BC,

Доказать: AB=CD, AD=BC, B=D.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы