Методика обучения школьников применению теории к решению задач на вычисление и доказательство по теме "Многоугольники"

Методика изучения темы "Прямоугольник"

В учебнике "Геометрия 7-11" А.В. Погорелова понятие "прямоугольник" вводится в §6 "Четырехугольники" в пункте 54 "Прямоугольник": Прямоугольник - это параллелограмм, у которого все углы прямые.

В учебнике "Геометрия 7-9" Л.С. Атанасяна тема "Прямоугольник рассматривается в §3 "

Прямоугольник, ромб, квадрат" в п.45 "Прямоугольник": в начале параграфа вводится определение: "прямоугольником называется параллелограмм, у которого все углы прямые", а затем рассматривают свойство прямоугольника (диагонали прямоугольника равны) и признак прямоугольника (если в параллелограмме диагонали равны, то этот параллелограмм - прямоугольник).

Рассмотрим методику изучения темы "Прямоугольник" на примере учебника А.В. Погорелова.

Прямоугольник - это параллелограмм, у которого все углы прямые.

Для изучения свойства прямоугольника, классу можно предложить вопросы:

Равны ли диагонали у произвольного параллелограмма? (на доске нарисован параллелограмм, не являющийся прямоугольником).

Равны ли диагонали у прямоугольника?

Докажите равенство диагоналей прямоугольника ABCD, рассмотрев треугольники BAD и CDA.

4. Сформулируйте теорему о свойствах прямоугольника.

Теорема 6.4 Диагонали прямоугольника равны.

После введения определения и свойства прямоугольника школьники решают задачи.

Задача 1. Докажите, что если у параллелограмма все углы равны, то он является прямоугольником.

Дано: ABCD-параллелограмм, A=B=С=D.

Доказать: ABCD-прямоугольник.

Доказательство.

A+B=180, т.к. они являются внутренними односторонними при параллельных прямых ВС и AD и секущей АВ. => A=B=90.

=> ABCD - прямоугольник.

Задача 2. В параллелограмме из вершин углов на противолежащие стороны опущены перпендикуляры. Докажите, что полученный четырехугольник - прямоугольник.

Дано: GBFD-параллелограмм,

BAGD,DCBF.

Доказать: ABCD-прямоугольник.

Доказательство.

BC||AD, так как GBFD - параллелограмм;

BAD=90, так как BAGD.

АВС=90, так как BAD и ABC - внутренние односторонние углы при BF||GD и секущей АВ.

BCD=90, так как DCBF.

CAD=90, так как CAD и BCD - внутренние односторонние углы при BF||GD и секущей DC.

BA||DC, так как BAD и CDA - внутренние односторонние углы при прямых АВ и CD и секущей AD и BAD+CDA=180.

Следовательно, ABCD - параллелограмм, у которого все углы равны.

Значит, ABCD - прямоугольник.

Задача 3. В прямоугольнике ABCD диагональ АС образует со стороной AD угол, равный 37. найдите градусную меру угла ACD. (решение устно)

Ответ: ACD=53.

Затем им можно предложить систему задач, направленную на выработку соответствующих умений и навыков.

В параллелограмме KLMN каждый из углов LKM и MNL равен 57. определите, является ли параллелограмм KLMN прямоугольником.

Докажите, что если в четырехугольнике три угла прямые, то он является прямоугольником.

ABCD - прямоугольник. О - точка пересечения диагоналей. Докажите, что ААОВ - равнобедренный.

В прямоугольный равнобедренный треугольник вписан прямоугольник так, что угол прямоугольника совпадает с углом при вершине треугольника, а вершина противолежащего угла лежит на гипотенузе. Докажите, что периметр прямоугольника есть величина постоянная для данного треугольника.

Стороны прямоугольника равны 5см и 4см. биссектрисы углов, прилежащих к большей стороне, делят противолежащую сторону на три части. Найдите длины этих частей.

Конспект урока по теме "Прямоугольник".

Цели урока:

повторить понятие прямоугольника, опираясь на полученные ранее знания учащихся;

рассмотреть свойства прямоугольника как частного вида параллелограмма и научить учащихся применять их в процессе решения задач.

Ход урока

I. Организационный момент:

Сообщать цель урока, тему урока.

II. Актуализация знаний учащихся

1) Практическое задание:

Разделить данный отрезок на 7 равных частей.

2) Проверить Д/з №393 (б),398

3) Решение задач на готовых чертежах.

Работа проводится с целью подготовки учащихся к восприятию нового материала.

а) Найдите углы выпуклого четырёхугольника, если их градусные меры пропорциональны числам 1,2,3,4

б)

Докажите, что расстояния АМ и СN от вершин. А и. С параллелограмма ABCD до прямой BD равны.

в) Найдите углы параллелограмма ABCD, если A = 3B

III. Изучение нового материала

1. Ввести понятие прямоугольника можно в процессе ответов на вопросы (работа парами 3-5 мин.)

а) Какой четырёхугольник называется прямоугольником?

б) Можно ли утверждать, что прямоугольник - это параллелограмм, и почему?

в) Чем отличается произвольный параллелограмм от прямоугольника?

г) Закончите предложение: "Прямоугольник - это параллелограмм, у которого…"

д) Сформулируйте свойства прямоугольника.

На доске кратко все ответы фиксируем.

2. Рассмотреть особое свойство диагонали прямоугольника:

а) (самостоятельно в группах по 4 человека)

Исследуйте стороны, углы и диагонали прямоугольника и заполните таблицу:

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы