Теоретические и методические аспекты изучения темы "Интегральное исчисление функции нескольких переменных"

в) — полуплоскости, проходящие через ось .

Якобиан этого преобразования:

.

Якобиан сохраняет знак плюс, за исключением упомянутых выше случаев, когда , либо , и якобиан обращается в нуль [4].

3) Преобразование пространства самого в себя по формулам:

, ,

однозначно обратимо:

, , .

Оно называется инверсией [5].

4) Эллиптические координаты. Рассмотрим семейство софокусных и соосновных поверхностей второго порядка:

,

состоящее из эллипсоидов (при ), однополостных гиперболоидов (при ) и, наконец, двуполостных гиперболоидов (при ).

Через каждую точку пространства, не лежащую на координатах плоскостях, проходит по одной поверхности каждого типа. Действительно, левая часть уравнения, получаемого из (24):

,

имеет знак минус при , знак плюс при , снова знак минус при и, наконец, знак плюс при больших . Отсюда следует, что уравнение имеет три положительных корня: один (что отвечает эллипсоиду), второй , (он дает однополостный гиперболоид), третий (двуполостной гиперболоид) [1].

Используя свойства корней написанного выше уравнения, которое мы можем рассматривать как кубическое уравнение относительно , а именно:

,

;

,

найдем:

, ,

.

Если ограничиться первым координатным октантом, то в этих формулах надлежит сохранить лишь положительные знаки. Числа можно рассматривать, как криволинейные координаты точек этого угла. Их и называют эллиптическими координатами. Три семейства координатных поверхностей - это и будут семейства эллипсоидов, однополостных и двуполостных гиперболоидов, о которых была речь выше.

Якобиан преобразования имеет вид:

[3].

2.3 Выражение объема в криволинейных координатах

Возвращаясь к предположениям и обозначениям п° 1.1, поставим себе задачей выразить объем (ограниченного) тела в пространстве . Иным интегралом, распространенным на соответствующее тело в пространстве .

Искомый объем выражается, прежде всего поверхностным интегралом второго типа:,распространенным на внешнюю сторону поверхности . Отсюда постараемся перейти к обыкновенному двойному интегралу.

Будем исходить из параметрических уравнений (21) поверхности (23)(изменяются в области на плоскости ). Тогда уравнения (22) выразят, очевидно, поверхность .

Полагая , имеем:.

При этом интеграл берется со знаком плюс, если ориентация поверхности , связанная с рассмотрением внешней ее стороны соответствует ориентации плоскости , что всегда можно предположить [1].

Так как зависят от через посредство переменных , то, по известному свойствy функциональных определителей:

.

Подставляя выражение в полученный выше интеграл, найдем:

. (25)

Сопоставим этот интеграл с поверхностным интегралом второго типа, распространенным на внешнюю сторону поверхности :

. (26)

Если его преобразовать, исходя из параметрических уравнений (21) к обыкновенному двойному интегралу придем как раз к интегралу (24). Единственное различие между этими интегралами может заключаться лишь в знаке: если ориентация плоскости соответствует ориентации поверхности , связанной с рассмотрением внешней ее стороны, то интегралы равны, в противном же случае они разнятся знаками [1].

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы