Исследование функциональных последовательностей и рядов в вузе

Рассмотрим теперь поведение исследуемого функционального ряда при и .

При этих значениях получаются соответствующие числовые ряды:

которые, сходятся по интегральному признаку сходимости ч

ислового положительного ряда и признаку сходимости знакочередующегося ряда соответственно.

Окончательно получаем, что на отрезке [-1,1] заданный функциональный ряд абсолютно сходится [13].

§2. Определения равномерно сходящихся функциональных последовательностей и рядов

Опр.5. Последовательность функций равномерно сходится на множестве Х к предельной функции , если

.

Опр.6. Функциональная последовательность называется равномерно сходящейся на множестве X, если существует функция , в которой она равномерно сходится на множестве X. Обозначение:

[14].

§3. Геометрический смысл равномерной сходимости функциональной последовательности

Перепишем неравенство опр.5 в виде двойного неравенства:

.

Это означает, что график функций целиком располагается в полосе шириной , и функции и получены смещением функции вверх и вниз на величину [14].

Рис.1.

Понятие равномерной сходимости естественным образом переносится и на функциональные ряды.

§4. Определения равномерной сходимости функциональных рядов

Опр.7. Если последовательность частичных сумм функционального ряда равномерно сходится к функции на множестве X, то ряд равномерно сходится на множестве X [14].

Рассмотрим определение равномерной сходимости функционального

ряда на некотором отрезке .

Пусть функциональный ряд сходится на отрезке к функции и - какое-нибудь значение из области сходимости, причем .

Тогда числовой ряд

сходится и его сумма равна , т.е.

=

Представим это равенство в виде

=,

где - n-я частичная сумма; - остаток ряда.

Тогда,

,

.

Как и в случае функциональной последовательности, для функционального ряда номер также зависит как от , так и от значения из области сходимости: . Однако, для функционального ряда число может и не зависеть от , т.е. это число будет одно и тоже для каждого значения , принадлежащего области сходимости.

Опр.8. Функциональный ряд , сходящийся на отрезке , называется равномерно сходящимся, если для любого существует такой номер , не зависящий от , что при , каково бы ни было [7].

Пример №2. Исследовать на сходимость функциональный ряд

.

Решение

При сумма ряда равна нулю; при ряд, являясь суммой бесконечно убывающей геометрической прогрессии, имеет сумму . При сумма ряда равна единице. При и ряд представляет собой сумму бесконечно возрастающей геометрической прогрессии, следовательно, расходится.

Таким образом, данный ряд сходится на отрезке и имеет сумму

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы