Исследование функциональных последовательностей и рядов в вузе

Следовательно, функциональный ряд сходится к при . Члены ряда являются непрерывными функциями при R.

Осталось доказать, что функциональный ряд равномерно сходится на промежутке .

Для можно найти такое , что .

По признаку Даламбера сходимости положительных числовых рядов получим . А так как , то и, значит, числовой ряд сходится.

Значит, по признаку Вейерштрасса будет равномерно и абсолютно сходиться функциональный ряд на промежутке .

Следовательно, функциональный ряд на промежутке можно почленно продифференцировать:

, , т.е. сумма функционального ряда непрерывно дифференцируема.

при .

Ответ: при .

Пример №35 (№113 из [10], студент у доски с помощью преподавателя).

Найти сумму ряда .

Решение

По признаку Даламбера абсолютной сходимости функциональных ря-дов имеем: . Если , т.е. , то заданный функциональный ряд сходится абсолютно. Так как ряд сходится, то его остаток оценивается с помощью неравенства , т.е. . Неравенства и равносильны, значит, взяв , где - какое-нибудь целое положительное число, которое удовлетворяет условию , приходим к неравенству .

Итак, заданный функциональный ряд сходится равномерно и абсолютно в промежутке .

Кроме того, члены заданного функционального ряда являются непрерывными функциями R.

Найдем производную общего члена заданного функционального ряда: . Исследуем функциональный ряд на абсолютную и равномерную сходимость. Для можно найти такое , что . По признаку Даламбера сходимости числовых рядов имеем: , так как , то числовой ряд сходится абсолютно.

Значит, по признаку Вейерштрасса равномерной сходимости функциональных рядов, ряд сходится равномерно и абсолютно при .

Следовательно, заданный функциональный ряд можно почленно продифференцировать.

Продифференцируем почленно заданный функциональный ряд и получим такой функциональный ряд:

.

Полученный ряд при представляет собой сумму убывающей геометрической прогрессии с .

Тогда и при .

Итак, сумма ряда при , т.е. .

Функциональный ряд равномерно и абсолютно сходится при , и функция непрерывна при . Значит, ряд можно почленно интегрировать. Проинтегрировав в пределах от до , находим

при .

Ответ: при .

В конце занятия подводятся итоги, выставляются оценки, оговаривается домашнее задание.

Преподаватель: Итак, подведем итог: на сегодняшнем занятии мы с вами научились исследовать функциональные ряды на интегрируемость и диф-ференцируемость, а также применять теоремы о дифференцируемости и интегрируемости рядов для нахождения их суммы. Для окончательного закрепления на дом будут заданы аналогичные примеры.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы