Исследование функциональных последовательностей и рядов в вузе
Ответ: Доказана равномерная и абсолютная сходимость при .
Пример №18 (№89 из [10], c комментариями преподавателя).
С помощью признака Вейерштрасса показать, что ряд
сходится равномерно в промежутке .
Решение
Так как при
R и числовой положительный ряд
сходится, как обобщенный гармонический ряд с
, то заданный функциональный ряд сходится равномерно и абсолютно при любых значениях
.
Ответ: Доказана равномерная и абсолютная сходимость для R.
Пример №19 (№79 из [10], студент с помощью преподавателя).
Показать, что ряд сходится равномерно на отрезке
.
Решение
Если , то
. Значит, числовой положительный ряд
является мажорантным. По признаку Даламбера абсолютной сходимости числовых рядов имеем:
, так как
, то числовой ряд сходится абсолютно.
Следовательно, по теореме Вейерштрасса равномерной и абсолютной сходимости функциональных рядов, ряд сходится при
равномерно и абсолютно.
Если , то ряд примет вид
- сходится. Значит, и заданный функциональный ряд сходится равномерно.
Если , то ряд примет вид
- сходится. Значит, и заданный функциональный ряд сходится равномерно.
Итак, ряд сходится равномерно и абсолютно на отрезке
.
Ответ: Доказана равномерная и абсолютная сходимость на отрезке . Пример №20 (№52 из [10], студент самостоятельно у доски).
Исследовать на равномерную сходимость ряд на всей числовой оси.
Решение
Так как при
N и
R, то в качестве мажорантного ряда выберем
- числовой положительный ряд (ряд Дирихле). Он сходится. Следовательно, и ряд
по теореме Вейерштрасса равномерно и абсолютно сходится, так как
при
R
Ответ: Доказана равномерная и абсолютная сходимость на интервале .
Пример №21 (№164 из [8], студент самостоятельно у доски).
Исследовать на равномерную сходимость ряд на интервале
.
Решение
Если , то
- условие равномерной сходимости не выполняется.
Если , то
. Ряд
мажорантный по отношению к ряду
. По признаку Даламбера сходимости числовых рядов имеем:
. Так как
, то числовой ряд сходится. Значит, по теореме Вейерштрасса равномерно сходимости функциональных рядов, так как
при
, ряд
сходится равномерно и абсолютно.
Ответ: Равномерно и абсолютно сходится при .
Преподаватель: Доказательство равномерной сходимости может быть и вспомогательной задачей, которую необходимо решить, чтобы выполнить основное задание.
Пример №22 (№94 из [10], с комментариями преподавателя).
Показать, что на луче функциональный ряд
равномерно сходится. Начиная с какого номера , остаток ряда
(независимо от значения
) удовлетворяет неравенству
?.
Решение
Воспользуемся признаком Вейерштрасса.
Так как при справедливо неравенство:
, то элементы заданного функционального ряда на указанном промежутке не больше соответствующих членов положительного числового ряда
, т.е.
при
.
Числовой положительный ряд сходится, так как представляет собой сумму убывающей геометрической прогрессии с
,
,
.
Другие рефераты на тему «Педагогика»:
- Формирование толерантности как средство успешной социализации младших школьников
- Особенности психомоторных функций у детей со стертой дизартрией
- Игровые методы обучения при изучении органической химии как средство повышения познавательной активности и качества знаний
- Воспитательная работа в инновационных школах
- Проектная деятельность на уроках технологии при изучении раздела "Лоскутная пластика"
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения