Исследование функциональных последовательностей и рядов в вузе
Вопрос 1: Какая последовательность называется равномерно сходящейся?
Ответ: Определение №1. Функциональная последовательность называется равномерно сходящейся на множестве , если существует функция
, в которой она равномерно сходится на множестве . Обозначение:
[14].
Вопрос 2: Какой функциональный ряд называется равномерно сходящимся? Сформулировать определение такого ряда, используя понятие последовательности его частичных сумм.
Ответ: Определение №2. Если последовательность частичных сумм функционального ряда равномерно сходится к функции на множестве , то ряд равномерно сходится на множестве [21].
Вопрос 3: Дать определение равномерно сходящегося функционального ряда, используя понятие остатка функционального ряда.
Ответ: Определение №3. Представим сумму функционального ряда в виде: , где [-остаток функционального ряда].
Определение №4. Сходящийся функциональный ряд называется равномерно сходящимся в некоторой области , если для каждого сколь угодно малого числа найдется такое положительное число , что при выполняется неравенство для любого из области . При этом сумма равномерно сходящегося ряда в области , где (n=1,2,3…) - непрерывные функции в области , есть непрерывная функция.
Вопрос 4: Сформулировать достаточный признак равномерной сходимости функционального ряда - признак Вейерштрасса.
Ответ: Теорема. Пусть даны два ряда: функциональный , элементами которого являются функции , определенные на множестве, и числовой положительный сходящийся ряд . Тогда, если для всех выполняется неравенство , то функциональный ряд равномерно и абсолютно сходится на множестве .
Преподаватель: А теперь рассмотрим задание на исследование равномерной сходимости функционального ряда.
Пример №16 (№349 из [7], c комментариями преподавателя).
Показать, что ряд
сходится равномерно при всех действительных значениях .
Решение
Данный ряд при любом значении сходится по признаку Лейбница, поэтому его остаток оценивается с помощью неравенства , т.е.
.
Так как неравенства и равносильны, то, взяв , где - какое-нибудь целое положительное число, которое удовлетворяет условию , приходим к неравенству . Итак, данный ряд сходится рав-номерно в промежутке при всех .
Ответ: Доказана равномерная сходимость для R.
Пример №17 (№51 из [10], студент у доски с помощью преподавателя).
Исследовать на равномерную сходимость ряд
на любом конечном интервале.
Решение
Докажем, что каково бы ни было число , данный ряд сходится равномерно и абсолютно в круге радиусом , т.е. .
Заданный ряд сходится при любом значении , в частности, при , получаем числовой ряд: .
Исследуем его на абсолютную сходимость, применив признак Даламбера . Так как , то ряд сходится, причем абсолютно.
Возьмем этот ряд в качестве мажорантного, по признаку Вейерштрасса равномерной сходимости функционального ряда при .
Значит, заданный ряд равномерно и абсолютно сходится при .
Другие рефераты на тему «Педагогика»:
- Экспериментальное исследование использования дидактических игр на уроках русского языка
- Психолого-педагогические основы проведения практических занятий по дисциплине "Пожарная и аварийно-спасательная техника, связь, автоматика, противопожарное водоснабжение"
- Использование развивающих игр и упражнений на уроках технологии
- Использование информационных технологий в обучении геометрии
- Коррекционная работа по устранению дисграфии: направления и содержание
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения