Исследование функциональных последовательностей и рядов в вузе

Так как по условию достаточности выполняется неравенство , то какое бы х из Х не было взято, функциональная последовательность будет числовой последовательностью, а для числовой последовательности выполняется критерий Коши сходимости числовой последовательности width=104 height=33 src="images/referats/27276/image119.png">, который утверждает, что эта последовательность сходится.

3) Значит, у функциональной последовательности существует конечный предел, а это доказывает существование предельной функции для функциональной последовательности: . Кроме того, .

А это означает, что функциональная последовательность будет сходиться на множестве Х, так как будет выполняться неравенство: , перейдем к пределу при , а n-const, получим: - условие равномерной сходимости функциональной последовательности по определению.

Теорема доказана [14].

§6. Критерий Коши равномерной сходимости функционального ряда

Теорема 2. Для того чтобы функциональный ряд равномерно сходился на множестве X, необходимо и достаточно, чтобы 0, N, , , N и выполнялось неравенство:

.

Доказательство

1) Составим разность частичных сумм функционального ряда :

.

2) Если будут выполняться неравенства: , то это означает, что последовательность частичных сумм функционального ряда равномерно сходится на множестве Х. А по определению равномерной сходимости функционального ряда, исследуемый функциональный ряд будет сходиться на множестве Х.

Теорема доказана [14].

§7. Достаточный признак равномерной и абсолютной сходимости функционального ряда (признак Вейерштрасса)

Теорема 3. Пусть даны два ряда: функциональный , элементами которого являются функции , определенные на множестве Х, и числовой положительный сходящийся ряд . Тогда, если для всех выполняется неравенство , то функциональный ряд равномерно и абсолютно сходится на множестве Х.

Доказательство:

Пусть выполняются все условия теоремы.

Так как по условию теоремы числовой ряд сходится, то в соответствии со свойством числового ряда, его остаток должен стремится к нулю, т.е. или .

Так как это положительный числовой ряд, то неравенство примет вид:

По условию теоремы выполняется неравенство: . Поэтому, при выполняется и такое неравенство: .

Если , то неравенство примет вид: (с учетом пункта 2). По свойству транзитивности - это остаток положительного функционального ряда, стремящегося к нулю при . Значит, функциональный ряд будет сходиться по свойству рядов. Известно, что если ряд абсолютно сходится, то он просто сходится. Значит, функциональный ряд сходится.

Докажем равномерность сходимости функционального ряда. Из неравенства и, используя свойства модуля суммы двух действительных чисел () можно переписать это неравенство так:

.

По свойству транзитивности: - условие равномерности сходимости функционального ряда на множестве Х.

Теорема доказана [21].

Замечание. Положительный сходящийся числовой ряд, связанный с функциональным рядом, называется мажорантным или мажорирующим [14].

Пример №3: Доказать, что функциональный ряд абсолютно и равномерно сходится на всей числовой прямой.

Решение

1) Так как , N, R, то в качестве мажорантного ряда выберем при R.

2) Cравним общие элементы функционального и числового рядов: , при R. Следовательно, сходится абсолютно и равномерно на R, так как - положительный сходящийся ряд (ряд Дирихле с ) [4]. Замечание. Признак Вейерштрасса является лишь достаточным условием равномерной сходимости функционального ряда [14].

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы