Теория управления. Принципы системного анализа
Топологические уравнения с использованием М-матрицы имеют вид:
(13)
где – векторы переменных типа разности потенциалов на ветвях дерева и хордах;
– векторы переме
нных типа потока для ветвей дерева и хорд.
Записывая первое уравнение (13) в развернутом виде
вы можете убедиться, что оно совпадает с системой уравнений (12). Аналогично, второе уравнение (13) совпадает с (11). Таким образом, использование М-матрицы позволяет формализовать процедуру получения математической модели. При этом сечения дерева специально выбирать не надо. Выше такие сечения приведены для наглядности.
Рис.12. К построению М-матрицы
Возможна иная формализация процедуры построения математической модели с использованием матрицы инциденций. Будем рассматривать исходный граф (см. рис, 11) как хорды некоторого фиктивного дерева (рис. 13), ветви которого на рисунке изображены пунктирными линиями.
Составим М-матрицу, поочередно включая в фиктивное дерево хорды исходного графа. Так, контур 1-5 состоит из хорды 1-5 и ветви 1-5, направление которой противоположно хорде, поэтому в М-матрице этой ветви будет отвечать значение – 1. В контуре 2-3-5 направление ветви 3-5 совпадает с направлением хорды, а для ветви 2-5 – не совпадает, поэтому будем соответственно иметь +1 и -1. Включая последовательно все хорды, получим М-матрицу (рис. 13), приведенную в табл. 2, или, выделяя содержательную часть М-матрицы.
Рис.13.Граф с фиктивным деревом
(14)
Таблица 10.3
Хорды |
Ветви дерева | |||
1 – 5 |
2 – 5 |
3 – 5 |
4 – 5 | |
1 – 5 3 – 5 4 – 5 3 – 4 1 – 2 2 – 4 2 – 3 |
-1 0 0 0 -1 0 0 |
0 0 0 0 1 -1 -1 |
0 -1 0 -1 0 0 1 |
0 0 -1 1 0 1 0 |
Рассмотрим второе уравнение системы (13), которое будет справедливо для М-матрицы (14), но с некоторым отличием. Это отличие связано с тем, что было построено фиктивное дерево, поэтому в ветвях его не будет токов и, следовательно, исходное уравнение примет вид . Индекс «х» у вектора J мы опустили, поскольку хордами являются все ребра исходного графа. Обратите внимание, что транспонированная М-матрица представляет собой не что иное, как матрицу инциденций исходного графа (см. рис.), записанную с обратными знаками:
(15)
Все это позволяет записать второе уравнение системы (13) в ином виде: .
Первое уравнение системы (13) изменится следующим образом. Разность потенциалов ветвей дерева Uvd есть разность потенциалов i-й и базовой точек, т. е. потенциал i-й точки . М-матрица будет равна , поэтому первое уравнение системы (13) примет вид .
Все сказанное дает возможность записать систему уравнений (13) в следующей форме:
(16)
Таким образом, возможны два способа формализации процедур построения математической модели для описания эквивалентной схемы технического объекта, в одном из которых используют систему уравнений (13) и М-матрицу, в другом – систему уравнений (16) и матрицу инциденций ориентированного графа.
В качестве примера рассмотрим механическую систему (рис. 14, а), эквивалентная схема (б) и граф (в) которой изображены на рисунке. Матрица инциденций приведена в табл. 3.
Таблица 3
Узлы графа |
Дуги графа | ||||||||
F |
R1 |
L1 |
L2 |
R2 |
R3 |
m1 |
m2 |
m3 | |
1 2 3 |
-1 |
1 |
1 -1 |
1 -1 |
1 |
1 |
1 |
1 |
1 |
Рис. 14.К примеру механической системы
Первое уравнение (16) в развернутой форме имеет вид:
где потоковые переменные JR, JL, Jm=Jc типов R, L, С можно записать в форме приведенных выше зависимостей между фазовыми переменными. В результате будет получена система дифференциальных уравнений. Транспонируя матрицу инциденций и используя второе уравнение системы (16), аналогично можно получить систему дифференциальных уравнений для переменных типа потенциала.
Литература:
1. Ильина Н.В. Системный анализ и моделирование процессов в техносфере: Учеб. пособие / Н.В. Ильина, Д.Д. Лапшин, В.И. Федянин. – Ч. 1. Воронеж: ГОУВПО «Воронежский государственный технический университет, 2008. – 206 с.
Лекция 18. Многокритериальная оптимизация
18.1 Свойства задач принятия решения со многими критериями
В технической практике задачи ПР с учетом нескольких критериев возникают достаточно часто. Сложность подобных задач существенно выше, чем при наличии одного критерия. Если при этом еще учитывать и неоднозначность внешних воздействий, то для получения корректного результата кроме математических знаний необходим также и опыт в соответствующей предметной области.
Другие рефераты на тему «Безопасность жизнедеятельности и охрана труда»:
Поиск рефератов
Последние рефераты раздела
- О средствах защиты органов дыхания от промышленных аэрозолей
- Обзор результатов производственных испытаний средств индивидуальной защиты органов дыхания (СИЗОД)
- О средствах индивидуальной защиты от пыли
- И маски любят счёт
- Правильное использование противогазов в профилактике профзаболеваний
- Снижение вредного воздействия загрязнённого воздуха на рабочих с помощью СИЗ органов дыхания
- О средствах индивидуальной защиты органов дыхания работающих