Теория управления. Принципы системного анализа

Пользуясь данными столбцов 1, 2, 3, 6, 7, составим нормальные уравнения (3.26), которые применительно к нашему случаю при удержании только двух первых членов формулы будут иметь вид:

Подставляя табличные данные, получим:

width=113 height=24 src="images/referats/5837/image165.png">

Решая эти уравнения, найдем: b0 =6,68; b1 = -3,48, следовательно,

Оценим точность выполненных построений. Подставив в полученную формулу значения x (табл. 8), определим вычисленные значения уt и отклонения.

Таблица 8

x

yt

y-yt

(y-yt)2

0

0.5

1.0

1.5

2.0

+6.68

+4.94

+3.20

+1.46

-0.28

+0.32

-0.14

-0.40

-0.06

+0.28

0.1024

0.0196

0.1600

0.0036

0.0784

Суммируя данные последнего столбца, будем иметь:

Средняя квадратическая ошибка на единицу веса

Среднее абсолютное отклонение (5.9) равно

Полученные величины показывают, что формула подобрана неудовлетворительно, так как исходные данные имеют точность до 0,1, а средняя квадратическая ошибка на единицу веса значительно больше 0,1.

Повторим все операции, используя более точное выражение

Для записи нормальных уравнений (7) дополним вспомогательную табл. 3.8 новыми данными, которые приведены в столбцах 4, 5, 8 и выделены курсивом. Составим нормальные уравнения:

После решения этой системы найдем b0=7.00; b1=-4.74; b2=0.63 и запишем искомую зависимость:

Для определения средней квадратической ошибки составим табл. 9.

Таблица 9

x

yt

y-yt

(y-yt)2

0

0.5

1.0

1.5

2.0

7,0

4.79

2,89

1.30

0.04

0

+0.01

-0.09

+0.10

-0.04

0

0.0001

0.0081

0.0100

0.0016

Суммируя последний столбец, получим

Средняя квадратическая ошибка на единицу веса

Среднее абсолютное отклонение

Следовательно, формула вполне удовлетворительно соответствует экспериментальным данным.

Литература

1. Ильина Н.В. Системный анализ и моделирование процессов в техносфере: Учеб. пособие / Н.В. Ильина, Д.Д. Лапшин, В.И. Федянин. – Ч. 1. Воронеж: ГОУВПО «Воронежский государственный технический университет, 2008. – 206 с.

Лекция 13. Кластерный анализ

13.1 Основная цель кластерного анализа

Термин кластерный анализ (впервые ввел Tryon, 1939) в действительности включает в себя набор различных алгоритмов классификации. Общий вопрос, задаваемый исследователями во многих областях, состоит в том, как организовать наблюдаемые данные в наглядные структуры, т.е. развернуть таксономии. Например, биологи ставят цель разбить животных на различные виды, чтобы содержательно описать различия между ними. В соответствии с современной системой, принятой в биологии, человек принадлежит к приматам, млекопитающим, амниотам, позвоночным и животным. Заметьте, что в этой классификации, чем выше уровень агрегации, тем меньше сходства между членами в соответствующем классе. Человек имеет больше сходства с другими приматами (т.е. с обезьянами), чем с "отдаленными" членами семейства млекопитающих (например, собаками) и т.д. Далее мы рассмотрим общие методы кластерного анализ: Объединение (древовидная кластеризация), Двувходовое объединение и Метод K средних.

Заметим, что предыдущие рассуждения ссылаются на алгоритмы кластеризации, но ничего не упоминают о проверке статистической значимости. Фактически, кластерный анализ является не столько обычным статистическим методом, сколько "набором" различных алгоритмов распределения объектов по кластерам". Существует точка зрения, что в отличие от многих других статистических процедур, методы кластерного анализа используются в большинстве случаев тогда, когда вы не имеете каких-либо априорных гипотез относительно классов, но все еще находитесь в описательной стадии исследования. Следует понимать, что кластерный анализ определяет "наиболее возможно значимое решение". Поэтому проверка статистической значимости в действительности здесь неприменима, даже в случаях, когда известны p-уровни (как, например, в методе K средних).

Техника кластеризации применяется в самых разнообразных областях. Хартиган (Hartigan, 1975) дал прекрасный обзор многих опубликованных исследований, содержащих результаты, полученные методами кластерного анализа. Например, в области медицины кластеризация заболеваний, лечения заболеваний или симптомов заболеваний приводит к широко используемым таксономиям. В области психиатрии правильная диагностика кластеров симптомов, таких как паранойя, шизофрения и т.д., является решающей для успешной терапии. В археологии с помощью кластерного анализа исследователи пытаются установить таксономии каменных орудий, похоронных объектов и т.д. Известны широкие применения кластерного анализа в маркетинговых исследованиях. В общем, всякий раз, когда необходимо классифицировать "горы" информации к пригодным для дальнейшей обработки группам, кластерный анализ оказывается весьма полезным и эффективным.

13.2 Объединение (древовидная кластеризация)

Приведенный пример поясняет цель алгоритма объединения (древовидной кластеризации). Назначение этого алгоритма состоит в объединении объектов (например, животных) в достаточно большие кластеры, используя некоторую меру сходства или расстояние между объектами. Типичным результатом такой кластеризации является иерархическое дерево.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32  33  34  35  36  37  38  39  40  41  42  43  44  45 
 46  47  48  49  50  51  52  53  54  55  56  57  58  59  60 
 61  62  63  64  65  66  67  68  69  70  71  72  73  74  75 


Другие рефераты на тему «Безопасность жизнедеятельности и охрана труда»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы