Моделирование процессов тепло- и массопереноса при закачке радиоактивных растворов в глубокозалегающие пласты
Будем считать, что зависимость концентрации примеси в скелете от концентрации её в жидкости линейна (изотерма Генри), что является хорошим приближением при сравнительно небольших концентрациях мигранта
, |
( 1.3.4) |
где – коэффициент распределения загрязнителя между носителем и скелетом.
Тогда последнее уравнение принимает вид
|
(1.3.5) |
Учитывая, что для несжимаемой жидкости , а следовательно, , из последнего уравнения получим
. |
(1.3.6) |
Здесь введено обозначение
|
(1.3.7) |
– эффективный коэффициент диффузии в пласте. Из (1.3.6) следует, что в уравнении, описывающем миграцию загрязнителя, необходимо учитывать конвективный перенос загрязнителя, “осложнённый” наличием пористости в скелете и протекающими массообменными процессами между загрязнителем и скелетом. Уравнение (1.3.6) позволяет определить скорость конвективного переноса примесей в пористой среде по аналогии со скоростью конвективного переноса тепла и скоростью фильтрации
. |
(1.3.8) |
Скорость конвективного переноса примеси определяет положение фронта загрязнения Rd подобно тому, как скорость фильтрации определяет положение фронта закачиваемой жидкости Rw. При этом положение фронта закачиваемой жидкости определяется из баланса массы закачиваемой жидкости. В случае закачки с постоянной скоростью через скважину радиуса r0 выражение для Rw имеет вид
. |
(1.3.9) |
Соответствующие радиусы зоны загрязнения и термических возмущений определяются в пунктах 2.1 и 3.1.
1.4. Задача теплопереноса
1.4.1. Математическая постановка задачи теплопереноса и её обезразмеривание
Рассмотрим задачу о распространении радиоактивных примесей в пористом глубоко залегающем пласте, в который закачивается жидкость с растворёнными радиоактивными веществами. Такая задача является фундаментальной для подземного захоронения радиоактивных отходов и отходов химических производств.
Одним из способов прогнозирования динамики поведения радиоактивных и химических примесей в глубокозалегающих пластах, является исследование их температурных полей. Современные приборы и методики измерения температуры позволяют проводить оперативные измерения с точностью, превосходящей тысячные доли градуса. Температурные измерения в таких условиях можно использовать для контроля продвижения радиоактивной зоны.
Соответствующие температурные аномалии возникают как за счет отличия температуры закачиваемой жидкости от естественной температуры пластов, так и за счет энергии, выделяющейся при распаде радиоактивных веществ.
В результате одного акта радиоактивного распада выделяется энергия ~ 1 МэВ. Согласно действующим в России Нормам радиационной безопасности и санитарным правилам высокоактивными жидкими радиоактивными отходами (РАО) признаются отходы, активность которых > 1 Ки/л. Следовательно, для высокоактивных отходов выделяемая мощность оказывается порядка ~ ~ 5 Вт/м3. Причём, для средне- и долгоживущих нуклидов эта мощность мало меняется на протяжении лет и даже десятилетий. Выделяемая энергия является весьма существенной и приводит к значительному изменению температурного поля.
На рис. 1.1 представлена геометрия задачи в цилиндрической системе координат, ось z которой совпадает с осью скважины. Среда представлена тремя областями с плоскими границами раздела z = ±h. Закачка примесей в область ‑h < z < h производится из скважины радиуса r0; покрывающий (кровля) и подстилающий (подошва) пласты считаются непроницаемыми; средняя область толщины 2h является пористой; все пласты считаются однородными и анизотропными по теплофизическим свойствам.
Рис. 1.1. Геометрия задачи теплопереноса
Через скважину малого (по сравнению с расстоянием до точки наблюдения) радиуса в горизонтальный бесконечный пласт толщиной закачивается вода с радиоактивным загрязнителем.
В поступающей в пласт жидкости (при ) поддерживаются постоянная температура и концентрация примеси . В общем случае температура и концентрация загрязнителя в пласте изменяются за счёт конвективного переноса вдоль направления , радиальной теплопроводности и диффузии вдоль , теплопроводности и диффузии вдоль , за счёт наличия тепловых источников и источников концентрации (в нашем случае такими источниками является радиоактивный распад загрязнителя).
В окружающих средах имеет место теплопроводность и диффузия вдоль и радиальная теплопроводность и диффузия вдоль . В пласте концентрация примеси , температура – , коэффициент диффузии вдоль равен , коэффициент теплопроводности – , коэффициент радиальной диффузии – , коэффициент радиальной теплопроводности – , в покрывающих пласт породах соответственно – , , , , , , в подстилающих породах – , ,, , , . Кроме того, постулируются условия равенства температур и концентраций, а также плотностей тепловых и диффузионных потоков на границах соприкосновения, накладываются начальные и граничные условия. В начальный момент времени везде и в бесконечно удалённых точках всегда концентрации примеси в пласте и в окружающих средах равны нулю.
Другие рефераты на тему «Физика и энергетика»:
- Изучение закономерностей реабсорбции излучения донора на триплетных молекулах акцепторов энергии
- Изучение тепловых явлений в школьном курсе физики
- Анализ алгоритма работы специализированного вычислителя
- Расчёт электрооборудования и сетей при организации горных разработок в карьере
- Проектирование усилителя низкой частоты
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода