Моделирование процессов тепло- и массопереноса при закачке радиоактивных растворов в глубокозалегающие пласты

Математическая постановка задачи теплопереноса для всех областей, таким образом, включает уравнение теплопроводности с учётом радиоактивного распада в покрывающем

(1.4.1)

и подс

тилающем

(1.4.2)

пластах, а также уравнение конвективного переноса с учётом радиоактивного распада в пористом пласте

(1.4.3)

Сомножитель при во втором слагаемом в левой части уравнения (1.4.3) в развёрнутом виде

.

 

Условия сопряжения включают в себя равенство температур

,

(1.4.4)

и потоков тепла на границах раздела пластов

.

(1.4.5)

В уравнениях (1.4.1) – (1.4.3) учтено, что плотность радиоактивного нуклида в данной точке пространства определяется суммой плотностей в носителе и в скелете, которые связаны соотношением (1.3.4).

В начальный момент времени температура пластов является естественной невозмущённой температурой Земли на данной глубине. Рассматривая глубины, превышающие порог влияния сезонных температур (~100 м), будем считать, что в силу малой величины градиента температурного поля Земли (~0.01 К/м) и небольшой толщины пористого пласта (~10 м)

,

.

(1.4.6)

Температура загрязнителя в скважине, радиус которой мы считаем малым по сравнению с расстоянием до точки наблюдения, равна

.

(1.4.7)

Будем в дальнейшем искать превышение температуры в пластах над естественной температурой, выраженное в единицах геотермической температуры в пористом пласте .

При решении задачи удобно перейти к безразмерным координатам, определяемым соотношениями

, , , , ,

, , , ,

, , .

(1.4.8)

Сразу заметим, что в силу (1.3.7)

.

(1.4.9)

Безразмерный параметр At представляет собой отношение времени тепловой релаксации слоёв к среднему времени жизни радиоактивного нуклида. Выражение Pt является аналогом параметра Пекле, поскольку определяется аналогично последнему, но через температуропроводность настилающего, а не несущего пласта. Величина определяет отношение изменения температуры, вызванного «мгновенным» распадом радиоактивного нуклида к разности температур закачиваемой жидкости и естественной геотермической температуры пласта.

Для больших температурное поле определяется в основном энергией радиоактивного распада, для малых – конвективным переносом тепла, обусловленного различием температур закачиваемой жидкости и пласта.

В силу большого значения аналога параметра Пекле (Рt ~ ), в пористом пласте можно пренебречь радиальной кондуктивной теплопроводностью по сравнению с конвективным переносом тепла.

Аналогично, для настилающего и подстилающего пластов изменение радиальной составляющей температурного поля будет в значительной мере определяться конвективным переносом тепла в пористом пласте, что позволяет пренебречь для них вкладом соответствующих радиальных теплопроводностей.

Таким образом, во всех уравнениях, получающихся из (1.4.1) – (1.4.3) исчезнут слагаемые, содержащие и интересующие нас уравнения запишутся в виде (соответственно для настилающего, подстилающего и пористого пластов):

,

(1.4.10)

,

(1.4.11)

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32  33  34  35  36  37  38  39 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы