Моделирование рабочих процессов погрузочно-транспортных модулей с учетом случайного характера внешних воздействий

При изменении длины перегружателя от 4lя до 16lя пропускная способность ТТО не уменьшается. Однако более короткие перегружатели по окончании периода поступления груза транспортируют к выходному сечению большую долю поступившего объёма, поэтому условный коэффициент эффективности их выше. Однако груз, оставшийся в желобе, не сказывается на его работоспособности в последующих циклах погрузки из

штабеля.

С увеличением среднего размера куска в массиве штабеля, MDср, возрастает максимально возможная высота слоя. Так, при увеличении MDср от 0,2 до 0,4 м зафиксированная при моделировании высота слоя увеличилась с 0,47 до 0,52 м.

Важнейшее значение при оценке пропускной способности клинового перегружателя имеет накопленная максимальная высота слоя груза, которая формируется в процессе передачи порции материала из одной ячейки в другую. Для оценки предельных возможностей перегружателя выполнена специальная серия численных экспериментов на имитационной модели в условиях = 0; MDср = 0,2; Lп = 16×lя; K = 50 при изменении входного грузопотока Muвх = 0,155; 0,231; 0,335 м3/цикл (рис. 4.8).

4-6

Рис. 4.8. Зависимость максимальной высоты слоя на перегружателе от входного грузопотока

Исследования показывают, что в условиях случайных воздействий максимальная высота слоя растёт быстрее пропускной способности конвейера и существенно превышает аналогичный показатель процесса в детерминированной постановке. Для установления максимальной пропускной способности конкретного клинового перегружателя должна быть задана максимально допустимая высота слоя Hmax. Так как место загрузки перегружателя грузопотоком от погрузочной машины перемещается, то высота слоя должна соответствовать максимальной высоте бортов, устанавливаемых на перегружатель с учётом разброса формы материала в желобе. Так, если Hmax = 0,5 м, то предельная пропускная способность ПК-2М составит umax = 0,25 м3/цикл (то есть около 2,8 м3/мин). Для повышения пропускной способности необходимо увеличивать ширину желоба конвейера или уменьшать продолжительность цикла ТТО.

На основе выполненных исследований получены следующие результаты.

1. Разработана структура непрерывной модели формирования грузопотока погрузочными органами с учётом основных влияющих факторов. В отличие от известных, логико-математическая модель непрерывного процесса погрузки сможет реально отследить воздействие случайных факторов при перемещениях погрузочной машины относительно штабеля и транспортного средства.

2. Обоснована необходимая и достаточная совокупность математических моделей для формирования объёма единичного захвата, которая должна состоять из специальных расчётов и процедур:

- зависимость сопротивлений внедрению ковша от глубины внедрения с учётом влияния технологических и конструктивных факторов;

- методика расчёта глубины внедрения ковша в штабель под действием напорного усилия с учётом динамики процесса внедрения;

- зависимость максимального момента сопротивлений зачерпыванию в функции глубины внедрения с учётом влияния технологических и конструктивных факторов;

- методика расчёта допустимой глубины внедрения по фактору максимальных силовых возможностей механизма черпания;

- зависимости объёма единичного захвата ковшом в функции глубины внедрения при раздельной траектории движения передней кромки ковша;

- поцикловый объём единичного черпания для допустимой по возможностям механизмов напора и зачерпывания глубины внедрения с учётом реальной вместимости ковша и возможной потери груза из-за ссыпания.

3. Создана имитационная компьютерная модель формирования грузопотока клинового перегружателя, которая воспроизводит процесс случайного перемешивания груза в ячейках в процессе транспортирования. Исследования процесса транспортирования груза выявили широкие возможности модели по анализу параметров транспортной машины и возможностей её применения в составе проходческого погрузочно-транспортного модуля.

5. РАЗРАБОТКА ИНЖЕНЕРНОЙ МЕТОДИКИ ВЫБОРА РАЦИОНАЛЬНЫХ ВАРИАНТОВ ПРОХОДЧЕСКИХ ПОГРУЗОЧНО-ТРАНСПОРТНЫХ МОДУЛЕЙ

5.1 Общее построение инженерной методики

Целью разработки инженерной методики выбора эффективных вариантов ППТМ является создание инструмента пользователя, позволяющего в приемлемые сроки производить сопоставление по эффективности технически пригодных вариантов ППТМ для данных конкретных условий проведения выработки (или группы выработок).

Основные требования, предъявляемые к инженерной методике выбора [5, 99], сводятся к следующему:

1) адекватное воспроизведение рабочих процессов погрузочных и призабойных транспортных машин;

2) возможность контроля промежуточных результатов при имитационном моделировании работы ППТМ;

3) реализация итеративных процедур расчёта производительности системы или удельной трудоёмкости по усмотрению пользователя в случаях, если отдельные результаты дают значительный статистический разброс;

4) возможность пополнения базы данных новыми вариантами средств механизации и призабойного транспорта;

5) открытость тех разделов методики, в которых сосредоточены математические модели рабочих процессов;

6) возможность получения полного протокола о порядке и результатах поэтапного моделирования.

Общая структура методики базируется на совокупности и порядке выполнения процедур, обоснованных в п. 2.1. При этом учитываются результаты исследований процессов моделирования гранулометрического состава штабеля (п. 2.2), малого выделенного объёма (п. 2.3), среднего случайного размера куска (п. 2.4), производительности и трудоёмкости погрузки и призабойного транспорта ППТМ с ковшовыми машинами (пп. 4.1 и 4.2). Совокупность основных блоков инженерной методики выбора ППТМ, разработанной с учётом целевой установки и сформулированных выше требований, приведены на рисунке 5.1.

Ниже приводится краткое описание подсистем 1…8 и их структурная реализация.

Модуль 1. Описание горной выработки и штабеля после взрывных работ.

В состав модуля входят блоки, в которых формируется необходимая исходная информация о выработке и штабеле, используемая в процедурах выбора сравниваемых вариантов и последующего моделирования процессов погрузки и призабойного транспорта.

Рис. 5.1. Совокупность основных блоков инженерной методики выбора ППТМ

1.1. Описание параметров готовой горной выработки (или группы выработок), для которых решается задача выбора. В рассматриваемой подсистеме производится выбор поперечного сечения выработки из базы данных или вырисовывается оригинальная форма поперечного сечения.

По завершению процедур в блоке 1.1 сохраняются в выделенном файле следующие данные: геометрический образ проходимой выработки в состоянии полной готовности: постоянное крепление, размещение оборудования, размерные обозначения; размеры и площадь поперечного сечения.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32  33  34  35  36  37  38  39  40  41  42  43  44  45 
 46  47  48  49  50  51  52  53  54  55 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы